pystacked: Stacking generalization and machine learning in Stata
- URL: http://arxiv.org/abs/2208.10896v1
- Date: Tue, 23 Aug 2022 12:03:04 GMT
- Title: pystacked: Stacking generalization and machine learning in Stata
- Authors: Achim Ahrens, Christian B. Hansen, Mark E. Schaffer
- Abstract summary: pystacked implements stacked generalization via Python's scikit-lear.
Stacking combines multiple supervised machine learners into a single learner.
pystacked provides an easy-to-use API for scikit-learn's machine learning algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: pystacked implements stacked generalization (Wolpert, 1992) for regression
and binary classification via Python's scikit-lear}. Stacking combines multiple
supervised machine learners -- the "base" or "level-0" learners -- into a
single learner. The currently supported base learners include regularized
regression, random forest, gradient boosted trees, support vector machines, and
feed-forward neural nets (multi-layer perceptron). pystacked can also be used
with as a `regular' machine learning program to fit a single base learner and,
thus, provides an easy-to-use API for scikit-learn's machine learning
algorithms.
Related papers
- forester: A Tree-Based AutoML Tool in R [0.0]
The forester is an open-source AutoML package implemented in R for training high-quality tree-based models.
It fully supports binary and multiclass classification, regression, and partially survival analysis tasks.
With just a few functions, the user is capable of detecting issues regarding the data quality, preparing the preprocessing pipeline, training and tuning tree-based models, evaluating the results, and creating the report for further analysis.
arXiv Detail & Related papers (2024-09-07T10:39:10Z) - TopoX: A Suite of Python Packages for Machine Learning on Topological
Domains [89.9320422266332]
TopoX is a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains.
TopoX consists of three packages: TopoNetX, TopoEmbedX and TopoModelx.
arXiv Detail & Related papers (2024-02-04T10:41:40Z) - BackboneLearn: A Library for Scaling Mixed-Integer Optimization-Based
Machine Learning [0.0]
BackboneLearn is a framework for scaling mixed-integer optimization problems with indicator variables to high-dimensional problems.
BackboneLearn is built in Python and is user-friendly and easily implementable.
The source code of BackboneLearn is available on GitHub.
arXiv Detail & Related papers (2023-11-22T21:07:45Z) - LCE: An Augmented Combination of Bagging and Boosting in Python [45.65284933207566]
lcensemble is a high-performing, scalable and user-friendly Python package for the general tasks of classification and regression.
Local Cascade Ensemble (LCE) is a machine learning method that further enhances the prediction performance of the current state-of-the-art methods Random Forest and XGBoost.
arXiv Detail & Related papers (2023-08-14T16:34:47Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly.
We show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression.
Preliminary evidence that in-context learners share algorithmic features with these predictors.
arXiv Detail & Related papers (2022-11-28T18:59:51Z) - hyperbox-brain: A Toolbox for Hyperbox-based Machine Learning Algorithms [9.061408029414455]
hyperbox-brain is an open-source Python library implementing the leading hyperbox-based machine learning algorithms.
hyperbox-brain exposes a unified API which closely follows and is compatible with the renowned scikit-learn and numpy toolboxes.
arXiv Detail & Related papers (2022-10-06T06:40:07Z) - PyCIL: A Python Toolbox for Class-Incremental Learning [34.32500654158169]
We propose a Python toolbox that implements several key algorithms for class-incremental learning.
The toolbox contains implementations of a number of founding works of CIL such as EWC and iCaRL.
It also provides current state-of-the-art algorithms that can be used for conducting novel fundamental research.
arXiv Detail & Related papers (2021-12-23T13:41:24Z) - IMBENS: Ensemble Class-imbalanced Learning in Python [26.007498723608155]
imbens is an open-source Python toolbox for implementing and deploying ensemble learning algorithms on class-imbalanced data.
imbens is released under the MIT open-source license and can be installed from Python Package Index (PyPI)
arXiv Detail & Related papers (2021-11-24T20:14:20Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learn is a library of self-supervised methods for visual representation learning.
Implemented in Python, using Pytorch and Pytorch lightning, the library fits both research and industry needs.
arXiv Detail & Related papers (2021-08-03T22:19:55Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
This paper proposes a Python-based Optimum-Path Forest framework, denoted as OPFython.
As OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.
arXiv Detail & Related papers (2020-01-28T15:46:19Z) - Backward Feature Correction: How Deep Learning Performs Deep
(Hierarchical) Learning [66.05472746340142]
This paper analyzes how multi-layer neural networks can perform hierarchical learning _efficiently_ and _automatically_ by SGD on the training objective.
We establish a new principle called "backward feature correction", where the errors in the lower-level features can be automatically corrected when training together with the higher-level layers.
arXiv Detail & Related papers (2020-01-13T17:28:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.