Towards Open Set Video Anomaly Detection
- URL: http://arxiv.org/abs/2208.11113v1
- Date: Tue, 23 Aug 2022 17:53:34 GMT
- Title: Towards Open Set Video Anomaly Detection
- Authors: Yuansheng Zhu, Wentao Bao, and Qi Yu
- Abstract summary: Open Set Video Anomaly Detection (OpenVAD) aims to identify abnormal events from video data where both known anomalies and novel ones exist in testing.
We develop a novel weakly supervised method for the OpenVAD problem by integrating evidential deep learning (EDL) and normalizing flows (NFs) into a multiple instance learning (MIL) framework.
- Score: 11.944167192592905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open Set Video Anomaly Detection (OpenVAD) aims to identify abnormal events
from video data where both known anomalies and novel ones exist in testing.
Unsupervised models learned solely from normal videos are applicable to any
testing anomalies but suffer from a high false positive rate. In contrast,
weakly supervised methods are effective in detecting known anomalies but could
fail in an open world. We develop a novel weakly supervised method for the
OpenVAD problem by integrating evidential deep learning (EDL) and normalizing
flows (NFs) into a multiple instance learning (MIL) framework. Specifically, we
propose to use graph neural networks and triplet loss to learn discriminative
features for training the EDL classifier, where the EDL is capable of
identifying the unknown anomalies by quantifying the uncertainty. Moreover, we
develop an uncertainty-aware selection strategy to obtain clean anomaly
instances and a NFs module to generate the pseudo anomalies. Our method is
superior to existing approaches by inheriting the advantages of both the
unsupervised NFs and the weakly-supervised MIL framework. Experimental results
on multiple real-world video datasets show the effectiveness of our method.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Learn Suspected Anomalies from Event Prompts for Video Anomaly Detection [16.77262005540559]
A novel framework is proposed to guide the learning of suspected anomalies from event prompts.
It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos.
Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC.
arXiv Detail & Related papers (2024-03-02T10:42:47Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Resilient VAE: Unsupervised Anomaly Detection at the SLAC Linac Coherent
Light Source [3.7390282036618916]
This paper introduces the Resilient Variational Autoencoder (ResVAE), a deep generative model specifically designed for anomaly detection.
ResVAE exhibits resilience to anomalies present in the training data and provides feature-level anomaly attribution.
We apply our proposed method to detect anomalies in the accelerator status at the SLAC Linac Coherent Light Source.
arXiv Detail & Related papers (2023-09-05T15:53:41Z) - Synthetic Pseudo Anomalies for Unsupervised Video Anomaly Detection: A
Simple yet Efficient Framework based on Masked Autoencoder [1.9511777443446219]
We propose a simple yet efficient framework for video anomaly detection.
The pseudo anomaly samples are synthesized from only normal data by embedding random mask tokens without extra data processing.
We also propose a normalcy consistency training strategy that encourages the AEs to better learn the regular knowledge from normal and corresponding pseudo anomaly data.
arXiv Detail & Related papers (2023-03-09T08:33:38Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Anomaly Crossing: A New Method for Video Anomaly Detection as
Cross-domain Few-shot Learning [32.0713939637202]
Video anomaly detection aims to identify abnormal events that occurred in videos.
Most previous approaches learn only from normal videos using unsupervised or semi-supervised methods.
We propose a new learning paradigm by making full use of both normal and abnormal videos for video anomaly detection.
arXiv Detail & Related papers (2021-12-12T20:49:38Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.