PeRFception: Perception using Radiance Fields
- URL: http://arxiv.org/abs/2208.11537v1
- Date: Wed, 24 Aug 2022 13:32:46 GMT
- Title: PeRFception: Perception using Radiance Fields
- Authors: Yoonwoo Jeong, Seungjoo Shin, Junha Lee, Christopher Choy, Animashree
Anandkumar, Minsu Cho, Jaesik Park
- Abstract summary: We create the first large-scale implicit representation datasets for perception tasks, called the PeRFception.
It shows a significant memory compression rate (96.4%) from the original dataset, while containing both 2D and 3D information in a unified form.
We construct the classification and segmentation models that directly take as input this implicit format and also propose a novel augmentation technique to avoid overfitting on backgrounds of images.
- Score: 72.99583614735545
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The recent progress in implicit 3D representation, i.e., Neural Radiance
Fields (NeRFs), has made accurate and photorealistic 3D reconstruction possible
in a differentiable manner. This new representation can effectively convey the
information of hundreds of high-resolution images in one compact format and
allows photorealistic synthesis of novel views. In this work, using the variant
of NeRF called Plenoxels, we create the first large-scale implicit
representation datasets for perception tasks, called the PeRFception, which
consists of two parts that incorporate both object-centric and scene-centric
scans for classification and segmentation. It shows a significant memory
compression rate (96.4\%) from the original dataset, while containing both 2D
and 3D information in a unified form. We construct the classification and
segmentation models that directly take as input this implicit format and also
propose a novel augmentation technique to avoid overfitting on backgrounds of
images. The code and data are publicly available in
https://postech-cvlab.github.io/PeRFception .
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows [60.291277312569285]
We present a method for automatically modifying a NeRF representation based on a single observation.
Our method defines the transformation as a 3D flow, specifically as a weighted linear blending of rigid transformations.
We also introduce a new dataset for exploring the problem of modifying a NeRF scene through a single observation.
arXiv Detail & Related papers (2024-06-15T07:58:08Z) - HyperPlanes: Hypernetwork Approach to Rapid NeRF Adaptation [4.53411151619456]
We propose a few-shot learning approach based on the hypernetwork paradigm that does not require gradient optimization during inference.
We have developed an efficient method for generating a high-quality 3D object representation from a small number of images in a single step.
arXiv Detail & Related papers (2024-02-02T16:10:29Z) - Registering Neural Radiance Fields as 3D Density Images [55.64859832225061]
We propose to use universal pre-trained neural networks that can be trained and tested on different scenes.
We demonstrate that our method, as a global approach, can effectively register NeRF models.
arXiv Detail & Related papers (2023-05-22T09:08:46Z) - Implicit Ray-Transformers for Multi-view Remote Sensing Image
Segmentation [26.726658200149544]
We propose ''Implicit Ray-Transformer (IRT)'' based on Implicit Neural Representation (INR) for RS scene semantic segmentation with sparse labels.
The proposed method includes a two-stage learning process. In the first stage, we optimize a neural field to encode the color and 3D structure of the remote sensing scene.
In the second stage, we design a Ray Transformer to leverage the relations between the neural field 3D features and 2D texture features for learning better semantic representations.
arXiv Detail & Related papers (2023-03-15T07:05:07Z) - SegNeRF: 3D Part Segmentation with Neural Radiance Fields [63.12841224024818]
SegNeRF is a neural field representation that integrates a semantic field along with the usual radiance field.
SegNeRF is capable of simultaneously predicting geometry, appearance, and semantic information from posed images, even for unseen objects.
SegNeRF is able to generate an explicit 3D model from a single image of an object taken in the wild, with its corresponding part segmentation.
arXiv Detail & Related papers (2022-11-21T07:16:03Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.