Unrestricted Black-box Adversarial Attack Using GAN with Limited Queries
- URL: http://arxiv.org/abs/2208.11613v1
- Date: Wed, 24 Aug 2022 15:28:46 GMT
- Title: Unrestricted Black-box Adversarial Attack Using GAN with Limited Queries
- Authors: Dongbin Na, Sangwoo Ji, and Jong Kim
- Abstract summary: We present a novel method for generating unrestricted adversarial examples using GAN.
Our method, Latent-HSJA, efficiently leverages the advantages of a decision-based attack in the latent space.
We demonstrate that our proposed method is efficient in evaluating the robustness of classification models with limited queries in a black-box setting.
- Score: 1.7205106391379026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples are inputs intentionally generated for fooling a deep
neural network. Recent studies have proposed unrestricted adversarial attacks
that are not norm-constrained. However, the previous unrestricted attack
methods still have limitations to fool real-world applications in a black-box
setting. In this paper, we present a novel method for generating unrestricted
adversarial examples using GAN where an attacker can only access the top-1
final decision of a classification model. Our method, Latent-HSJA, efficiently
leverages the advantages of a decision-based attack in the latent space and
successfully manipulates the latent vectors for fooling the classification
model.
With extensive experiments, we demonstrate that our proposed method is
efficient in evaluating the robustness of classification models with limited
queries in a black-box setting. First, we demonstrate that our targeted attack
method is query-efficient to produce unrestricted adversarial examples for a
facial identity recognition model that contains 307 identities. Then, we
demonstrate that the proposed method can also successfully attack a real-world
celebrity recognition service.
Related papers
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
Black-box adversarial attacks present a realistic threat to action recognition systems.
We propose a new attack on action recognition that addresses these shortcomings by generating perturbations.
Our method achieves 8% and higher 12% deception rates compared to state-of-the-art query-based and transfer-based attacks.
arXiv Detail & Related papers (2022-11-23T17:47:49Z) - RamBoAttack: A Robust Query Efficient Deep Neural Network Decision
Exploit [9.93052896330371]
We develop a robust query efficient attack capable of avoiding entrapment in a local minimum and misdirection from noisy gradients.
The RamBoAttack is more robust to the different sample inputs available to an adversary and the targeted class.
arXiv Detail & Related papers (2021-12-10T01:25:24Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting.
We propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes.
Our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods.
arXiv Detail & Related papers (2021-07-05T06:17:47Z) - Automated Decision-based Adversarial Attacks [48.01183253407982]
We consider the practical and challenging decision-based black-box adversarial setting.
Under this setting, the attacker can only acquire the final classification labels by querying the target model.
We propose to automatically discover decision-based adversarial attack algorithms.
arXiv Detail & Related papers (2021-05-09T13:15:10Z) - ExAD: An Ensemble Approach for Explanation-based Adversarial Detection [17.455233006559734]
We propose ExAD, a framework to detect adversarial examples using an ensemble of explanation techniques.
We evaluate our approach using six state-of-the-art adversarial attacks on three image datasets.
arXiv Detail & Related papers (2021-03-22T00:53:07Z) - Local Black-box Adversarial Attacks: A Query Efficient Approach [64.98246858117476]
Adrial attacks have threatened the application of deep neural networks in security-sensitive scenarios.
We propose a novel framework to perturb the discriminative areas of clean examples only within limited queries in black-box attacks.
We conduct extensive experiments to show that our framework can significantly improve the query efficiency during black-box perturbing with a high attack success rate.
arXiv Detail & Related papers (2021-01-04T15:32:16Z) - Perturbing Across the Feature Hierarchy to Improve Standard and Strict
Blackbox Attack Transferability [100.91186458516941]
We consider the blackbox transfer-based targeted adversarial attack threat model in the realm of deep neural network (DNN) image classifiers.
We design a flexible attack framework that allows for multi-layer perturbations and demonstrates state-of-the-art targeted transfer performance.
We analyze why the proposed methods outperform existing attack strategies and show an extension of the method in the case when limited queries to the blackbox model are allowed.
arXiv Detail & Related papers (2020-04-29T16:00:13Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
We present a new approach to improve the robustness of a model against black-box transfer attacks.
A removable additional neural network is included in the target model, and is designed to induce the textitluring effect.
Our deception-based method only needs to have access to the predictions of the target model and does not require a labeled data set.
arXiv Detail & Related papers (2020-04-10T06:48:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.