CNN-based Prediction of Network Robustness With Missing Edges
- URL: http://arxiv.org/abs/2208.11847v1
- Date: Thu, 25 Aug 2022 03:36:20 GMT
- Title: CNN-based Prediction of Network Robustness With Missing Edges
- Authors: Chengpei Wu and Yang Lou and Ruizi Wu and Wenwen Liu and Junli Li
- Abstract summary: We investigate the performance of CNN-based approaches for connectivity and controllability prediction, when partial network information is missing.
A threshold is explored that if a total amount of more than 7.29% information is lost, the performance of CNN-based prediction will be significantly degenerated.
- Score: 0.9239657838690227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connectivity and controllability of a complex network are two important
issues that guarantee a networked system to function. Robustness of
connectivity and controllability guarantees the system to function properly and
stably under various malicious attacks. Evaluating network robustness using
attack simulations is time consuming, while the convolutional neural network
(CNN)-based prediction approach provides a cost-efficient method to approximate
the network robustness. In this paper, we investigate the performance of
CNN-based approaches for connectivity and controllability robustness
prediction, when partial network information is missing, namely the adjacency
matrix is incomplete. Extensive experimental studies are carried out. A
threshold is explored that if a total amount of more than 7.29\% information is
lost, the performance of CNN-based prediction will be significantly degenerated
for all cases in the experiments. Two scenarios of missing edge representations
are compared, 1) a missing edge is marked `no edge' in the input for
prediction, and 2) a missing edge is denoted using a special marker of
`unknown'. Experimental results reveal that the first representation is
misleading to the CNN-based predictors.
Related papers
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Comprehensive Analysis of Network Robustness Evaluation Based on Convolutional Neural Networks with Spatial Pyramid Pooling [4.366824280429597]
Connectivity robustness, a crucial aspect for understanding, optimizing, and repairing complex networks, has traditionally been evaluated through simulations.
We address these challenges by designing a convolutional neural networks (CNN) model with spatial pyramid pooling networks (SPP-net)
We show that the proposed CNN model consistently achieves accurate evaluations of both attack curves and robustness values across all removal scenarios.
arXiv Detail & Related papers (2023-08-10T09:54:22Z) - SPP-CNN: An Efficient Framework for Network Robustness Prediction [13.742495880357493]
This paper develops an efficient framework for network robustness prediction, the spatial pyramid pooling convolutional neural network (SPP-CNN)
The new framework installs a spatial pyramid pooling layer between the convolutional and fully-connected layers, overcoming the common mismatch issue in the CNN-based prediction approaches.
arXiv Detail & Related papers (2023-05-13T09:09:20Z) - A Learning Convolutional Neural Network Approach for Network Robustness
Prediction [13.742495880357493]
Network robustness is critical for various societal and industrial networks again malicious attacks.
In this paper, an improved method for network robustness prediction is developed based on learning feature representation using convolutional neural network (LFR-CNN)
In this scheme, higher-dimensional network data are compressed to lower-dimensional representations, and then passed to a CNN to perform robustness prediction.
arXiv Detail & Related papers (2022-03-20T13:45:55Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
We present a time-dynamic approach to model uncertainties of instance segmentation networks.
We apply this approach to the detection of false positives and the estimation of prediction quality.
The proposed method only requires a readily trained neural network and video sequence input.
arXiv Detail & Related papers (2020-12-14T13:39:05Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - EagerNet: Early Predictions of Neural Networks for Computationally
Efficient Intrusion Detection [2.223733768286313]
We propose a new architecture to detect network attacks with minimal resources.
The architecture is able to deal with either binary or multiclass classification problems and trades prediction speed for the accuracy of the network.
arXiv Detail & Related papers (2020-07-27T11:31:37Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.