Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network
- URL: http://arxiv.org/abs/2208.12044v2
- Date: Tue, 25 Apr 2023 08:45:05 GMT
- Title: Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy
Synthesizing Network
- Authors: Jingcai Guo, Song Guo, Jie Zhang, Ziming Liu
- Abstract summary: Federated learning (FL) has emerged as a promising privacy-preserving distributed machine learning framework.
We propose a novel FL training framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing Network (FSNet) to mitigate the Non-I.I.D. at-the-source issue.
- Score: 19.23943687834319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a promising privacy-preserving
distributed machine learning framework recently. It aims at collaboratively
learning a shared global model by performing distributed training locally on
edge devices and aggregating local models into a global one without centralized
raw data sharing in the cloud server. However, due to the large local data
heterogeneities (Non-I.I.D. data) across edge devices, the FL may easily obtain
a global model that can produce more shifted gradients on local datasets,
thereby degrading the model performance or even suffering from the
non-convergence during training. In this paper, we propose a novel FL training
framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing
Network (FSNet) to mitigate the Non-I.I.D. FL at-the-source. Concretely, we
maintain an edge-agnostic hidden model in the cloud server to estimate a
less-accurate while direction-aware inversion of the global model. The hidden
model can then fuzzily synthesize several mimic I.I.D. data samples (sample
features) conditioned on only the global model, which can be shared by edge
devices to facilitate the FL training towards faster and better convergence.
Moreover, since the synthesizing process involves neither access to the
parameters/updates of local models nor analyzing individual local model
outputs, our framework can still ensure the privacy of FL. Experimental results
on several FL benchmarks demonstrate that our method can significantly mitigate
the Non-I.I.D. issue and obtain better performance against other representative
methods.
Related papers
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Straggler-resilient Federated Learning: Tackling Computation
Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network [4.1813760301635705]
We propose Federated Partial Model Training (FedPMT), where devices with smaller computational capabilities work on partial models and contribute to the global model.
As such, all devices in FedPMT prioritize the most crucial parts of the global model.
Empirical results show that FedPMT significantly outperforms the existing benchmark FedDrop.
arXiv Detail & Related papers (2023-11-16T16:30:04Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - FedMR: Fedreated Learning via Model Recombination [7.404225808071622]
Federated Learning (FL) enables global model training across clients without compromising their confidential local data.
Existing FL methods rely on Federated Averaging (FedAvg)-based aggregation.
This paper proposes a novel and effective FL paradigm named FedMR (Federating Model Recombination)
arXiv Detail & Related papers (2022-08-16T11:30:19Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
We study federated learning, which enables mobile devices to utilize their local datasets to train a global model.
We introduce a lossy FL (LFL) algorithm, in which both the global model and the local model updates are quantized before being transmitted.
arXiv Detail & Related papers (2020-06-18T16:55:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.