Constraining Pseudo-label in Self-training Unsupervised Domain
Adaptation with Energy-based Model
- URL: http://arxiv.org/abs/2208.12885v1
- Date: Fri, 26 Aug 2022 22:50:23 GMT
- Title: Constraining Pseudo-label in Self-training Unsupervised Domain
Adaptation with Energy-based Model
- Authors: Lingsheng Kong, Bo Hu, Xiongchang Liu, Jun Lu, Jane You, Xiaofeng Liu
- Abstract summary: unsupervised domain adaptation (UDA) is developed to introduce the knowledge in the labeled source domain to the unlabeled target domain.
Recently, deep self-training presents a powerful means for UDA, involving an iterative process of predicting the target domain.
We resort to the energy-based model and constrain the training of the unlabeled target sample with an energy function minimization objective.
- Score: 26.074500538428364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning is usually data starved, and the unsupervised domain adaptation
(UDA) is developed to introduce the knowledge in the labeled source domain to
the unlabeled target domain. Recently, deep self-training presents a powerful
means for UDA, involving an iterative process of predicting the target domain
and then taking the confident predictions as hard pseudo-labels for retraining.
However, the pseudo-labels are usually unreliable, thus easily leading to
deviated solutions with propagated errors. In this paper, we resort to the
energy-based model and constrain the training of the unlabeled target sample
with an energy function minimization objective. It can be achieved via a simple
additional regularization or an energy-based loss. This framework allows us to
gain the benefits of the energy-based model, while retaining strong
discriminative performance following a plug-and-play fashion. The convergence
property and its connection with classification expectation minimization are
investigated. We deliver extensive experiments on the most popular and
large-scale UDA benchmarks of image classification as well as semantic
segmentation to demonstrate its generality and effectiveness.
Related papers
- All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Contrastive Mean Teacher for Domain Adaptive Object Detectors [20.06919799819326]
Mean-teacher self-training is a powerful paradigm in unsupervised domain adaptation for object detection, but it struggles with low-quality pseudo-labels.
We propose Contrastive Mean Teacher (CMT) -- a unified, general-purpose framework with the two paradigms naturally integrated to maximize beneficial learning signals.
CMT leads to new state-of-the-art target-domain performance: 51.9% mAP on Foggy Cityscapes, outperforming the previously best by 2.1% mAP.
arXiv Detail & Related papers (2023-05-04T17:55:17Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
Cross-domain performance of automatic speech recognition (ASR) could be severely hampered due to mismatch between training and testing distributions.
Previous work has shown that self-supervised learning (SSL) or pseudo-labeling (PL) is effective in UDA by exploiting the self-supervisions of unlabeled data.
This work presents a systematic UDA framework to fully utilize the unlabeled data with self-supervision in the pre-training and fine-tuning paradigm.
arXiv Detail & Related papers (2022-06-20T14:02:53Z) - Boosting Unsupervised Domain Adaptation with Soft Pseudo-label and
Curriculum Learning [19.903568227077763]
Unsupervised domain adaptation (UDA) improves classification performance on an unlabeled target domain by leveraging data from a fully labeled source domain.
We propose a model-agnostic two-stage learning framework, which greatly reduces flawed model predictions using soft pseudo-label strategy.
At the second stage, we propose a curriculum learning strategy to adaptively control the weighting between losses from the two domains.
arXiv Detail & Related papers (2021-12-03T14:47:32Z) - STRUDEL: Self-Training with Uncertainty Dependent Label Refinement
across Domains [4.812718493682454]
We propose an unsupervised domain adaptation (UDA) approach for white matter hyperintensity (WMH) segmentation.
We propose to predict the uncertainty of pseudo labels and integrate it in the training process with an uncertainty-guided loss function to highlight labels with high certainty.
Our results on WMH segmentation across datasets demonstrate the significant improvement of STRUDEL with respect to standard self-training.
arXiv Detail & Related papers (2021-04-23T13:46:26Z) - Cycle Self-Training for Domain Adaptation [85.14659717421533]
Cycle Self-Training (CST) is a principled self-training algorithm that enforces pseudo-labels to generalize across domains.
CST recovers target ground truth, while both invariant feature learning and vanilla self-training fail.
Empirical results indicate that CST significantly improves over prior state-of-the-arts in standard UDA benchmarks.
arXiv Detail & Related papers (2021-03-05T10:04:25Z) - Energy-constrained Self-training for Unsupervised Domain Adaptation [25.594991545790638]
Unsupervised domain adaptation (UDA) aims to transfer the knowledge on a labeled source domain distribution to perform well on an unlabeled target domain.
Recently, the deep self-training involves an iterative process of predicting on the target domain and then taking the confident predictions as hard pseudo-labels for retraining.
In this paper, we resort to the energy-based model and constrain the training of the unlabeled target sample with the energy function minimization objective.
arXiv Detail & Related papers (2021-01-01T21:02:18Z) - A Free Lunch for Unsupervised Domain Adaptive Object Detection without
Source Data [69.091485888121]
Unsupervised domain adaptation assumes that source and target domain data are freely available and usually trained together to reduce the domain gap.
We propose a source data-free domain adaptive object detection (SFOD) framework via modeling it into a problem of learning with noisy labels.
arXiv Detail & Related papers (2020-12-10T01:42:35Z) - Two-phase Pseudo Label Densification for Self-training based Domain
Adaptation [93.03265290594278]
We propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD.
In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images.
In the second phase, we perform a confidence-based easy-hard classification.
To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss.
arXiv Detail & Related papers (2020-12-09T02:35:25Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.