Network-Level Adversaries in Federated Learning
- URL: http://arxiv.org/abs/2208.12911v1
- Date: Sat, 27 Aug 2022 02:42:04 GMT
- Title: Network-Level Adversaries in Federated Learning
- Authors: Giorgio Severi, Matthew Jagielski, G\"okberk Yar, Yuxuan Wang, Alina
Oprea, Cristina Nita-Rotaru
- Abstract summary: We study the impact of network-level adversaries on training federated learning models.
We show that attackers dropping the network traffic from carefully selected clients can significantly decrease model accuracy on a target population.
We develop a server-side defense which mitigates the impact of our attacks by identifying and up-sampling clients likely to positively contribute towards target accuracy.
- Score: 21.222645649379672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a popular strategy for training models on distributed,
sensitive data, while preserving data privacy. Prior work identified a range of
security threats on federated learning protocols that poison the data or the
model. However, federated learning is a networked system where the
communication between clients and server plays a critical role for the learning
task performance. We highlight how communication introduces another
vulnerability surface in federated learning and study the impact of
network-level adversaries on training federated learning models. We show that
attackers dropping the network traffic from carefully selected clients can
significantly decrease model accuracy on a target population. Moreover, we show
that a coordinated poisoning campaign from a few clients can amplify the
dropping attacks. Finally, we develop a server-side defense which mitigates the
impact of our attacks by identifying and up-sampling clients likely to
positively contribute towards target accuracy. We comprehensively evaluate our
attacks and defenses on three datasets, assuming encrypted communication
channels and attackers with partial visibility of the network.
Related papers
- Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Characterizing Internal Evasion Attacks in Federated Learning [12.873984200814533]
Federated learning allows for clients to jointly train a machine learning model.
Clients' models are vulnerable to attacks during the training and testing phases.
In this paper, we address the issue of adversarial clients performing "internal evasion attacks"
arXiv Detail & Related papers (2022-09-17T21:46:38Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak private details belonging to other parties.
Our attacks are effective across membership inference, attribute inference, and data extraction.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty protocols for machine learning.
arXiv Detail & Related papers (2022-03-31T18:06:28Z) - Attribute Inference Attack of Speech Emotion Recognition in Federated
Learning Settings [56.93025161787725]
Federated learning (FL) is a distributed machine learning paradigm that coordinates clients to train a model collaboratively without sharing local data.
We propose an attribute inference attack framework that infers sensitive attribute information of the clients from shared gradients or model parameters.
We show that the attribute inference attack is achievable for SER systems trained using FL.
arXiv Detail & Related papers (2021-12-26T16:50:42Z) - UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label
Inference Attacks Against Split Learning [0.0]
Split learning framework aims to split up the model among the client and the server.
We show that split learning paradigm can pose serious security risks and provide no more than a false sense of security.
arXiv Detail & Related papers (2021-08-20T07:39:16Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z) - Unleashing the Tiger: Inference Attacks on Split Learning [2.492607582091531]
We introduce general attack strategies targeting the reconstruction of clients' private training sets.
A malicious server can actively hijack the learning process of the distributed model.
We demonstrate our attack is able to overcome recently proposed defensive techniques.
arXiv Detail & Related papers (2020-12-04T15:41:00Z) - Dynamic Defense Against Byzantine Poisoning Attacks in Federated
Learning [11.117880929232575]
Federated learning is vulnerable to Byzatine poisoning adversarial attacks.
We propose a dynamic aggregation operator that dynamically discards those adversarial clients.
The results show that the dynamic selection of the clients to aggregate enhances the performance of the global learning model.
arXiv Detail & Related papers (2020-07-29T18:02:11Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients.
Recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks.
We present a principled framework for evaluating and comparing different forms of client privacy leakage attacks.
arXiv Detail & Related papers (2020-04-22T05:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.