Towards Explaining Demographic Bias through the Eyes of Face Recognition
Models
- URL: http://arxiv.org/abs/2208.13400v1
- Date: Mon, 29 Aug 2022 07:23:06 GMT
- Title: Towards Explaining Demographic Bias through the Eyes of Face Recognition
Models
- Authors: Biying Fu and Naser Damer
- Abstract summary: Biases inherent in both data and algorithms make the fairness of machine learning (ML)-based decision-making systems less than optimal.
We aim at providing a set of explainability tool that analyse the difference in the face recognition models' behaviors when processing different demographic groups.
We do that by leveraging higher-order statistical information based on activation maps to build explainability tools that link the FR models' behavior differences to certain facial regions.
- Score: 6.889667606945215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biases inherent in both data and algorithms make the fairness of widespread
machine learning (ML)-based decision-making systems less than optimal. To
improve the trustfulness of such ML decision systems, it is crucial to be aware
of the inherent biases in these solutions and to make them more transparent to
the public and developers. In this work, we aim at providing a set of
explainability tool that analyse the difference in the face recognition models'
behaviors when processing different demographic groups. We do that by
leveraging higher-order statistical information based on activation maps to
build explainability tools that link the FR models' behavior differences to
certain facial regions. The experimental results on two datasets and two face
recognition models pointed out certain areas of the face where the FR models
react differently for certain demographic groups compared to reference groups.
The outcome of these analyses interestingly aligns well with the results of
studies that analyzed the anthropometric differences and the human judgment
differences on the faces of different demographic groups. This is thus the
first study that specifically tries to explain the biased behavior of FR models
on different demographic groups and link it directly to the spatial facial
features. The code is publicly available here.
Related papers
- Social Bias Probing: Fairness Benchmarking for Language Models [38.180696489079985]
This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment.
We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections.
We show that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized.
arXiv Detail & Related papers (2023-11-15T16:35:59Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Uncovering Bias in Face Generation Models [0.0]
Recent advancements in GANs and diffusion models have enabled the creation of high-resolution, hyper-realistic images.
These models may misrepresent certain social groups and present bias.
This work is a novel analysis covering and embedding spaces for fine-grained understanding of bias over three approaches.
arXiv Detail & Related papers (2023-02-22T18:57:35Z) - The drivers of online polarization: fitting models to data [0.0]
echo chamber effect and opinion polarization may be driven by several factors including human biases in information consumption and personalized recommendations produced by feed algorithms.
Until now, studies have mainly used opinion dynamic models to explore the mechanisms behind the emergence of polarization and echo chambers.
We provide a method to numerically compare the opinion distributions obtained from simulations with those measured on social media.
arXiv Detail & Related papers (2022-05-31T17:00:41Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
Two metrics focus on the representational and stereotypical bias of the dataset, and the third one on the residual bias of the trained model.
We demonstrate the usefulness of the metrics by applying them to a FER problem based on the popular Affectnet dataset.
arXiv Detail & Related papers (2022-05-20T09:40:42Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Mitigating Face Recognition Bias via Group Adaptive Classifier [53.15616844833305]
This work aims to learn a fair face representation, where faces of every group could be more equally represented.
Our work is able to mitigate face recognition bias across demographic groups while maintaining the competitive accuracy.
arXiv Detail & Related papers (2020-06-13T06:43:37Z) - InsideBias: Measuring Bias in Deep Networks and Application to Face
Gender Biometrics [73.85525896663371]
This work explores the biases in learning processes based on deep neural network architectures.
We employ two gender detection models based on popular deep neural networks.
We propose InsideBias, a novel method to detect biased models.
arXiv Detail & Related papers (2020-04-14T15:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.