Federated Learning with Label Distribution Skew via Logits Calibration
- URL: http://arxiv.org/abs/2209.00189v1
- Date: Thu, 1 Sep 2022 02:56:39 GMT
- Title: Federated Learning with Label Distribution Skew via Logits Calibration
- Authors: Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, Chao
Wu
- Abstract summary: In this paper, we investigate the label distribution skew in FL, where the distribution of labels varies across clients.
We propose FedLC, which calibrates the logits before softmax cross-entropy according to the probability of occurrence of each class.
Experiments on federated datasets and real-world datasets demonstrate that FedLC leads to a more accurate global model.
- Score: 26.98248192651355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional federated optimization methods perform poorly with heterogeneous
data (ie, accuracy reduction), especially for highly skewed data. In this
paper, we investigate the label distribution skew in FL, where the distribution
of labels varies across clients. First, we investigate the label distribution
skew from a statistical view. We demonstrate both theoretically and empirically
that previous methods based on softmax cross-entropy are not suitable, which
can result in local models heavily overfitting to minority classes and missing
classes. Additionally, we theoretically introduce a deviation bound to measure
the deviation of the gradient after local update. At last, we propose FedLC
(\textbf {Fed} erated learning via\textbf {L} ogits\textbf {C} alibration),
which calibrates the logits before softmax cross-entropy according to the
probability of occurrence of each class. FedLC applies a fine-grained
calibrated cross-entropy loss to local update by adding a pairwise label
margin. Extensive experiments on federated datasets and real-world datasets
demonstrate that FedLC leads to a more accurate global model and much improved
performance. Furthermore, integrating other FL methods into our approach can
further enhance the performance of the global model.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Dirichlet-Based Prediction Calibration for Learning with Noisy Labels [40.78497779769083]
Learning with noisy labels can significantly hinder the generalization performance of deep neural networks (DNNs)
Existing approaches address this issue through loss correction or example selection methods.
We propose the textitDirichlet-based Prediction (DPC) method as a solution.
arXiv Detail & Related papers (2024-01-13T12:33:04Z) - Exploiting Label Skews in Federated Learning with Model Concatenation [39.38427550571378]
Federated Learning (FL) has emerged as a promising solution to perform deep learning on different data owners without exchanging raw data.
Among different non-IID types, label skews have been challenging and common in image classification and other tasks.
We propose FedConcat, a simple and effective approach that degrades these local models as the base of the global model.
arXiv Detail & Related papers (2023-12-11T10:44:52Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
Federated learning (FL) aims to collaboratively train a shared model across multiple clients without transmitting their local data.
We propose FedBalance, which corrects the optimization bias among local models by calibrating their logits.
Our method can gain 13% higher average accuracy compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-11-14T14:37:33Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Flexible Distribution Alignment: Towards Long-tailed Semi-supervised Learning with Proper Calibration [18.376601653387315]
Longtailed semi-supervised learning (LTSSL) represents a practical scenario for semi-supervised applications.
This problem is often aggravated by discrepancies between labeled and unlabeled class distributions.
We introduce Flexible Distribution Alignment (FlexDA), a novel adaptive logit-adjusted loss framework.
arXiv Detail & Related papers (2023-06-07T17:50:59Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised federated learning (FL) enables multiple clients to share the trained model without sharing their labeled data.
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients.
arXiv Detail & Related papers (2022-04-07T09:12:00Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.