Representation Learning for Non-Melanoma Skin Cancer using a Latent
Autoencoder
- URL: http://arxiv.org/abs/2209.01779v1
- Date: Mon, 5 Sep 2022 06:24:58 GMT
- Title: Representation Learning for Non-Melanoma Skin Cancer using a Latent
Autoencoder
- Authors: Simon Myles Thomas
- Abstract summary: Generative learning is a powerful tool for representation learning, and shows particular promise for problems in biomedical imaging.
It remains difficult to faithfully reconstruct images from generative models, particularly those as complex as histological images.
In this work, two existing methods (autoencoders and latent autoencoders) are combined in attempt to improve our ability to encode and decode real images of non-melanoma skin cancer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative learning is a powerful tool for representation learning, and shows
particular promise for problems in biomedical imaging. However, in this
context, sampling from the distribution is secondary to finding representations
of real images, which often come with labels and explicitly represent the
content and quality of the target distribution. It remains difficult to
faithfully reconstruct images from generative models, particularly those as
complex as histological images. In this work, two existing methods
(autoencoders and adversarial latent autoencoders) are combined in attempt to
improve our ability to encode and decode real images of non-melanoma skin
cancer, specifically intra-epidermal carcinoma (IEC). Utilising a dataset of
high-quality images of IEC (256 x 256), this work assesses the result of both
image reconstruction quality and representation learning. It is shown that
adversarial training can improve baseline FID scores from 76 to 50, and that
benchmarks on representation learning can be improved by up to 3%. Smooth and
realistic interpolations of the variation in the morphological structure are
also presented for the first time, positioning representation learning as a
promising direction in the context of computational pathology.
Related papers
- Learning Brain Tumor Representation in 3D High-Resolution MR Images via Interpretable State Space Models [42.55786269051626]
We propose a novel state-space-model (SSM)-based masked autoencoder which scales ViT-like models to handle high-resolution data effectively.
We propose a latent-to-spatial mapping technique that enables direct visualization of how latent features correspond to specific regions in the input volumes.
Our results highlight the potential of SSM-based self-supervised learning to transform radiomics analysis by combining efficiency and interpretability.
arXiv Detail & Related papers (2024-09-12T04:36:50Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks.
ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images.
The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset.
arXiv Detail & Related papers (2024-04-18T15:28:34Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Creating Realistic Anterior Segment Optical Coherence Tomography Images
using Generative Adversarial Networks [0.0]
Generative Adversarial Network (GAN) purposed to create high-resolution, realistic Anterior Segment Optical Coherence Tomography (AS- OCT) images.
We trained the Style and WAvelet based GAN on 142,628 AS- OCT B-scans.
arXiv Detail & Related papers (2023-06-24T20:48:00Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
We propose a cross-level constrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation.
With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance.
arXiv Detail & Related papers (2022-02-08T15:12:11Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.