Federated Zero-Shot Learning for Visual Recognition
- URL: http://arxiv.org/abs/2209.01994v1
- Date: Mon, 5 Sep 2022 14:49:34 GMT
- Title: Federated Zero-Shot Learning for Visual Recognition
- Authors: Zhi Chen, Yadan Luo, Sen Wang, Jingjing Li, Zi Huang
- Abstract summary: We propose a novel Federated Zero-Shot Learning FedZSL framework.
FedZSL learns a central model from the decentralized data residing on edge devices.
The effectiveness and robustness of FedZSL are demonstrated by extensive experiments conducted on three zero-shot benchmark datasets.
- Score: 55.65879596326147
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zero-shot learning is a learning regime that recognizes unseen classes by
generalizing the visual-semantic relationship learned from the seen classes. To
obtain an effective ZSL model, one may resort to curating training samples from
multiple sources, which may inevitably raise the privacy concerns about data
sharing across different organizations. In this paper, we propose a novel
Federated Zero-Shot Learning FedZSL framework, which learns a central model
from the decentralized data residing on edge devices. To better generalize to
previously unseen classes, FedZSL allows the training data on each device
sampled from the non-overlapping classes, which are far from the i.i.d. that
traditional federated learning commonly assumes. We identify two key challenges
in our FedZSL protocol: 1) the trained models are prone to be biased to the
locally observed classes, thus failing to generalize to the unseen classes
and/or seen classes appeared on other devices; 2) as each category in the
training data comes from a single source, the central model is highly
vulnerable to model replacement (backdoor) attacks. To address these issues, we
propose three local objectives for visual-semantic alignment and cross-device
alignment through relation distillation, which leverages the normalized
class-wise covariance to regularize the consistency of the prediction logits
across devices. To defend against the backdoor attacks, a feature magnitude
defending technique is proposed. As malicious samples are less correlated to
the given semantic attributes, the visual features of low magnitude will be
discarded to stabilize model updates. The effectiveness and robustness of
FedZSL are demonstrated by extensive experiments conducted on three zero-shot
benchmark datasets.
Related papers
- Zero-Shot Learning by Harnessing Adversarial Samples [52.09717785644816]
We propose a novel Zero-Shot Learning (ZSL) approach by Harnessing Adversarial Samples (HAS)
HAS advances ZSL through adversarial training which takes into account three crucial aspects.
We demonstrate the effectiveness of our adversarial samples approach in both ZSL and Generalized Zero-Shot Learning (GZSL) scenarios.
arXiv Detail & Related papers (2023-08-01T06:19:13Z) - Addressing Class Variable Imbalance in Federated Semi-supervised
Learning [10.542178602467885]
We propose Federated Semi-supervised Learning for Class Variable Imbalance (FCVI) to solve class variable imbalance.
FCVI is used to mitigate the data imbalance due to changes of the number of classes.
Our scheme is proved to be significantly better than baseline methods, while maintaining client privacy.
arXiv Detail & Related papers (2023-03-21T12:50:17Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
Self-Supervised Learning is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars.
In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks.
Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning.
arXiv Detail & Related papers (2022-12-23T15:46:23Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
Generalized zero-shot learning (GZSL) aims at training a model that can generalize to unseen class data by only using auxiliary information.
One of the main challenges in GZSL is a biased model prediction toward seen classes caused by overfitting on only available seen class data during training.
We propose a two-stream autoencoder-based gating model for GZSL.
arXiv Detail & Related papers (2022-03-08T16:41:06Z) - Task Aligned Generative Meta-learning for Zero-shot Learning [64.16125851588437]
We propose a Task-aligned Generative Meta-learning model for Zero-shot learning (TGMZ)
TGMZ mitigates the potentially biased training and enables meta-ZSL to accommodate real-world datasets containing diverse distributions.
Our comparisons with state-of-the-art algorithms show the improvements of 2.1%, 3.0%, 2.5%, and 7.6% achieved by TGMZ on AWA1, AWA2, CUB, and aPY datasets.
arXiv Detail & Related papers (2021-03-03T05:18:36Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
We propose a meta-continual zero-shot learning (MCZSL) approach to generalizing a model to categories unseen during training.
By pairing self-gating of attributes and scaled class normalization with meta-learning based training, we are able to outperform state-of-the-art results.
arXiv Detail & Related papers (2021-02-23T18:36:14Z) - Information Bottleneck Constrained Latent Bidirectional Embedding for
Zero-Shot Learning [59.58381904522967]
We propose a novel embedding based generative model with a tight visual-semantic coupling constraint.
We learn a unified latent space that calibrates the embedded parametric distributions of both visual and semantic spaces.
Our method can be easily extended to transductive ZSL setting by generating labels for unseen images.
arXiv Detail & Related papers (2020-09-16T03:54:12Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.