Machine Learning For Classification Of Antithetical Emotional States
- URL: http://arxiv.org/abs/2209.02249v1
- Date: Tue, 6 Sep 2022 06:54:33 GMT
- Title: Machine Learning For Classification Of Antithetical Emotional States
- Authors: Jeevanshi Sharma, Rajat Maheshwari, Yusuf Uzzaman Khan
- Abstract summary: This works analyses the baseline machine learning classifiers' performance on DEAP dataset.
It provides state-of-the-art comparable results leveraging the performance boost due to its deep learning architecture.
- Score: 1.1602089225841632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion Classification through EEG signals has achieved many advancements.
However, the problems like lack of data and learning the important features and
patterns have always been areas with scope for improvement both computationally
and in prediction accuracy. This works analyses the baseline machine learning
classifiers' performance on DEAP Dataset along with a tabular learning approach
that provided state-of-the-art comparable results leveraging the performance
boost due to its deep learning architecture without deploying heavy neural
networks.
Related papers
- Understanding learning from EEG data: Combining machine learning and
feature engineering based on hidden Markov models and mixed models [0.0]
Frontal theta oscillations are thought to play an important role in spatial navigation and memory.
EEG datasets are very complex, making changes in the neural signal related to behaviour difficult to interpret.
This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data.
arXiv Detail & Related papers (2023-11-14T12:24:12Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
We introduce a deep neural network that acquires interpretable representations by a hybrid structure of network-temporal encoding and recurrent attention blocks.
We demonstrate that our proposed architecture exceeds state-of-the-art results for emotion classification on the publicly available DEAP dataset.
arXiv Detail & Related papers (2023-07-06T15:35:14Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
This research looked into the use of machine learning algorithms to fill in the gaps in categorical datasets.
The emphasis was on ensemble models constructed using the Error Correction Output Codes framework.
Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data.
arXiv Detail & Related papers (2023-06-10T03:29:48Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Feature Learning for Accelerometer based Gait Recognition [0.0]
Autoencoders are very close to discriminative end-to-end models with regards to their feature learning ability.
fully convolutional models are able to learn good feature representations, regardless of the training strategy.
arXiv Detail & Related papers (2020-07-31T10:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.