Graph Neural Networks for Low-Energy Event Classification &
Reconstruction in IceCube
- URL: http://arxiv.org/abs/2209.03042v1
- Date: Wed, 7 Sep 2022 10:16:53 GMT
- Title: Graph Neural Networks for Low-Energy Event Classification &
Reconstruction in IceCube
- Authors: R. Abbasi, M. Ackermann, J. Adams, N. Aggarwal, J. A. Aguilar, M.
Ahlers, M. Ahrens, J.M. Alameddine, A. A. Alves Jr., N. M. Amin, K. Andeen,
T. Anderson, G. Anton, C. Arg\"uelles, Y. Ashida, S. Athanasiadou, S. Axani,
X. Bai, A. Balagopal V., M. Baricevic, S. W. Barwick, V. Basu, R. Bay, J. J.
Beatty, K.-H. Becker, J. Becker Tjus, J. Beise, C. Bellenghi, S. Benda, S.
BenZvi, D. Berley, E. Bernardini, D. Z. Besson, G. Binder, D. Bindig, E.
Blaufuss, S. Blot, F. Bontempo, J. Y. Book, J. Borowka, C. Boscolo Meneguolo,
S. B\"oser, O. Botner, J. B\"ottcher, E. Bourbeau, J. Braun, B. Brinson, J.
Brostean-Kaiser, R. T. Burley, R. S. Busse, M. A. Campana, E. G.
Carnie-Bronca, C. Chen, Z. Chen, D. Chirkin, K. Choi, B. A. Clark, L.
Classen, A. Coleman, G. H. Collin, A. Connolly, J. M. Conrad, P. Coppin, P.
Correa, S. Countryman, D. F. Cowen, R. Cross, C. Dappen, P. Dave, C. De
Clercq, J. J. DeLaunay, D. Delgado L\'opez, H. Dembinski, K. Deoskar, A.
Desai, P. Desiati, K. D. de Vries, G. de Wasseige, T. DeYoung, A. Diaz, J. C.
D\'iaz-V\'elez, M. Dittmer, H. Dujmovic, M. A. DuVernois, T. Ehrhardt, P.
Eller, R. Engel, H. Erpenbeck, J. Evans, P. A. Evenson, K. L. Fan, A. R.
Fazely, A. Fedynitch, N. Feigl, S. Fiedlschuster, A. T. Fienberg, C. Finley,
L. Fischer, D. Fox, A. Franckowiak, E. Friedman, A. Fritz, P. F\"urst, T. K.
Gaisser, J. Gallagher, E. Ganster, A. Garcia, S. Garrappa, L. Gerhardt, A.
Ghadimi, C. Glaser, T. Glauch, T. Gl\"usenkamp, N. Goehlke, J. G. Gonzalez,
S. Goswami, D. Grant, S. J. Gray, T. Gr\'egoire, S. Griswold, C. G\"unther,
P. Gutjahr, C. Haack, A. Hallgren, R. Halliday, L. Halve, F. Halzen, H.
Hamdaoui, M. Ha Minh, K. Hanson, J. Hardin, A. A. Harnisch, P. Hatch, A.
Haungs, K. Helbing, J. Hellrung, F. Henningsen, L. Heuermann, S. Hickford, C.
Hill, G. C. Hill, K. D. Hoffman, K. Hoshina, W. Hou, T. Huber, K. Hultqvist,
M. H\"unnefeld, R. Hussain, K. Hymon, S. In, N. Iovine, A. Ishihara, M.
Jansson, G. S. Japaridze, M. Jeong, M. Jin, B. J. P. Jones, D. Kang, W. Kang,
X. Kang, A. Kappes, D. Kappesser, L. Kardum, T. Karg, M. Karl, A. Karle, U.
Katz, M. Kauer, J. L. Kelley, A. Kheirandish, K. Kin, J. Kiryluk, S. R.
Klein, A. Kochocki, R. Koirala, H. Kolanoski, T. Kontrimas, L. K\"opke, C.
Kopper, D. J. Koskinen, P. Koundal, M. Kovacevich, M. Kowalski, T. Kozynets,
E. Krupczak, E. Kun, N. Kurahashi, N. Lad, C. Lagunas Gualda, M. J. Larson,
F. Lauber, J. P. Lazar, J. W. Lee, K. Leonard, A. Leszczy\'nska, M. Lincetto,
Q. R. Liu, M. Liubarska, E. Lohfink, C. Love, C. J. Lozano Mariscal, L. Lu,
F. Lucarelli, A. Ludwig, W. Luszczak, Y. Lyu, W. Y. Ma, J. Madsen, K. B. M.
Mahn, Y. Makino, S. Mancina, W. Marie Sainte, I. C. Mari\c{s}, S. Marka, Z.
Marka, M. Marsee, I. Martinez-Soler, R. Maruyama, T. McElroy, F. McNally, J.
V. Mead, K. Meagher, S. Mechbal, A. Medina, M. Meier, S. Meighen-Berger, Y.
Merckx, J. Micallef, D. Mockler, T. Montaruli, R. W. Moore, R. Morse, M.
Moulai, T. Mukherjee, R. Naab, R. Nagai, U. Naumann, A. Nayerhoda, J. Necker,
M. Neumann, H. Niederhausen, M. U. Nisa, S. C. Nowicki, A. Obertacke
Pollmann, M. Oehler, B. Oeyen, A. Olivas, R. Orsoe, J. Osborn, E. O'Sullivan,
H. Pandya, D. V. Pankova, N. Park, G. K. Parker, E. N. Paudel, L. Paul, C.
P\'erez de los Heros, L. Peters, T. C. Petersen, J. Peterson, S. Philippen,
S. Pieper, A. Pizzuto, M. Plum, Y. Popovych, A. Porcelli, M. Prado Rodriguez,
B. Pries, R. Procter-Murphy, G. T. Przybylski, C. Raab, J. Rack-Helleis, M.
Rameez, K. Rawlins, Z. Rechav, A. Rehman, P. Reichherzer, G. Renzi, E.
Resconi, S. Reusch, W. Rhode, M. Richman, B. Riedel, E. J. Roberts, S.
Robertson, S. Rodan, G. Roellinghoff, M. Rongen, C. Rott, T. Ruhe, L. Ruohan,
D. Ryckbosch, D. Rysewyk Cantu, I. Safa, J. Saffer, D. Salazar-Gallegos, P.
Sampathkumar, S. E. Sanchez Herrera, A. Sandrock, M. Santander, S. Sarkar, S.
Sarkar, M. Schaufel, H. Schieler, S. Schindler, B. Schlueter, T. Schmidt, J.
Schneider, F. G. Schr\"oder, L. Schumacher, G. Schwefer, S. Sclafani, D.
Seckel, S. Seunarine, A. Sharma, S. Shefali, N. Shimizu, M. Silva, B.
Skrzypek, B. Smithers, R. Snihur, J. Soedingrekso, A. S{\o}gaard, D. Soldin,
C. Spannfellner, G. M. Spiczak, C. Spiering, M. Stamatikos, T. Stanev, R.
Stein, T. Stezelberger, T. St\"urwald, T. Stuttard, G. W. Sullivan, I.
Taboada, S. Ter-Antonyan, W. G. Thompson, J. Thwaites, S. Tilav, K.
Tollefson, C. T\"onnis, S. Toscano, D. Tosi, A. Trettin, C. F. Tung, R.
Turcotte, J. P. Twagirayezu, B. Ty, M. A. Unland Elorrieta, K. Upshaw, N.
Valtonen-Mattila, J. Vandenbroucke, N. van Eijndhoven, D. Vannerom, J. van
Santen, J. Vara, J. Veitch-Michaelis, S. Verpoest, D. Veske, C. Walck, W.
Wang, T. B. Watson, C. Weaver, P. Weigel, A. Weindl, J. Weldert, C. Wendt, J.
Werthebach, M. Weyrauch, N. Whitehorn, C. H. Wiebusch, N. Willey, D. R.
Williams, M. Wolf, G. Wrede, J. Wulff, X. W. Xu, J. P. Yanez, E. Yildizci, S.
Yoshida, S. Yu, T. Yuan, Z. Zhang, P. Zhelnin
- Abstract summary: We introduce a Graph Neural Network (GNN) as the classification and reconstruction method for IceCube events.
The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy.
The GNN is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.
- Score: 0.02512334342040507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: IceCube, a cubic-kilometer array of optical sensors built to detect
atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed
1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The
classification and reconstruction of events from the in-ice detectors play a
central role in the analysis of data from IceCube. Reconstructing and
classifying events is a challenge due to the irregular detector geometry,
inhomogeneous scattering and absorption of light in the ice and, below 100 GeV,
the relatively low number of signal photons produced per event. To address this
challenge, it is possible to represent IceCube events as point cloud graphs and
use a Graph Neural Network (GNN) as the classification and reconstruction
method. The GNN is capable of distinguishing neutrino events from cosmic-ray
backgrounds, classifying different neutrino event types, and reconstructing the
deposited energy, direction and interaction vertex. Based on simulation, we
provide a comparison in the 1-100 GeV energy range to the current
state-of-the-art maximum likelihood techniques used in current IceCube
analyses, including the effects of known systematic uncertainties. For neutrino
event classification, the GNN increases the signal efficiency by 18% at a fixed
false positive rate (FPR), compared to current IceCube methods. Alternatively,
the GNN offers a reduction of the FPR by over a factor 8 (to below half a
percent) at a fixed signal efficiency. For the reconstruction of energy,
direction, and interaction vertex, the resolution improves by an average of
13%-20% compared to current maximum likelihood techniques in the energy range
of 1-30 GeV. The GNN, when run on a GPU, is capable of processing IceCube
events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz,
which opens the possibility of using low energy neutrinos in online searches
for transient events.
Related papers
- Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Conditional normalizing flows for IceCube event reconstruction [0.0]
The IceCube Neutrino Observatory is a cubic-kilometer high-energy neutrino detector deployed in the Antarctic ice.
Two major event classes are charged-current electron and muon neutrino interactions.
We discuss the inference of direction and energy for these classes using conditional normalizing flows.
arXiv Detail & Related papers (2023-09-28T12:28:08Z) - 2D Convolutional Neural Network for Event Reconstruction in IceCube
DeepCore [0.0]
IceCube DeepCore is an extension of the IceCube Neutrino Observatory designed to measure GeV scale atmospheric neutrino interactions.
Distinguishing muon neutrinos from other flavors and reconstructing inelasticity are especially difficult tasks at GeV scale energies.
We present a new CNN model that exploits time and depth translational symmetry in IceCube DeepCore data.
arXiv Detail & Related papers (2023-07-31T02:37:36Z) - Recent neutrino oscillation result with the IceCube experiment [14.645468999921961]
The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole.
IceCube's primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources.
Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector.
arXiv Detail & Related papers (2023-07-29T01:12:26Z) - Precision Spectroscopy of Fast, Hot Exotic Isotopes Using Machine
Learning Assisted Event-by-Event Doppler Correction [0.6999740786886537]
We propose an experimental scheme for performing sensitive, high-precision laser spectroscopy studies on fast exotic isotopes.
The ability to perform in-flight spectroscopy, directly on highly energetic beams, offers unique opportunities to study short-lived isotopes with lifetimes in the millisecond range.
arXiv Detail & Related papers (2023-04-25T19:53:59Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - CubeSat in-orbit validation of in-situ performance by high fidelity
radiation modelling [55.41644538483948]
The SpooQy-1 CubeSat mission demonstrated polarization-based quantum entanglement correlations using avalanche photodiodes for single-photon detection.
We report the increasing dark count rates of two silicon Geiger-mode avalanche photodiodes observed throughout its 2 year orbital lifetime.
We implement a high-fidelity radiation model combined with 3D computer aided design models of the SpooQy-1 CubeSat to estimate the accumulated displacement damage dose in each photodiode.
arXiv Detail & Related papers (2022-09-01T12:33:27Z) - Deep learning techniques for energy clustering in the CMS ECAL [0.0]
Reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle.
New methods are being investigated that exploit state-of-the-art deep learning architectures like Graph Neural Networks (GNN) and self-attention algorithms.
arXiv Detail & Related papers (2022-04-21T17:23:43Z) - Effects of a nuclear disturbed environment on a quantum free space
optical link [52.77024349608834]
This manuscript investigates the potential effect of a nuclear-disturbed atmospheric environment on the signal attenuation of a ground/satellite transmitter/receiver system.
Attenuation of a signal transmitted through the rising nuclear cloud and the subsequently transported debris is modeled climatologically for surface-level detonations of 10 kt, 100 kt, and 1 Mt.
arXiv Detail & Related papers (2021-08-10T19:25:54Z) - Thermal coupling and effect of subharmonic synchronization in a system
of two VO2 based oscillators [55.41644538483948]
We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices.
The effective action radius RTC of coupling depends both on the total energy released during switching and on the average power.
In the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by 10 %.
The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
arXiv Detail & Related papers (2020-01-06T03:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.