Improving Model Training via Self-learned Label Representations
- URL: http://arxiv.org/abs/2209.04528v1
- Date: Fri, 9 Sep 2022 21:10:43 GMT
- Title: Improving Model Training via Self-learned Label Representations
- Authors: Xiao Yu and Nakul Verma
- Abstract summary: We show that more sophisticated label representations are better for classification than the usual one-hot encoding.
We propose Learning with Adaptive Labels (LwAL) algorithm, which simultaneously learns the label representation while training for the classification task.
Our algorithm introduces negligible additional parameters and has a minimal computational overhead.
- Score: 5.969349640156469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern neural network architectures have shown remarkable success in several
large-scale classification and prediction tasks. Part of the success of these
architectures is their flexibility to transform the data from the raw input
representations (e.g. pixels for vision tasks, or text for natural language
processing tasks) to one-hot output encoding. While much of the work has
focused on studying how the input gets transformed to the one-hot encoding,
very little work has examined the effectiveness of these one-hot labels.
In this work, we demonstrate that more sophisticated label representations
are better for classification than the usual one-hot encoding. We propose
Learning with Adaptive Labels (LwAL) algorithm, which simultaneously learns the
label representation while training for the classification task. These learned
labels can significantly cut down on the training time (usually by more than
50%) while often achieving better test accuracies. Our algorithm introduces
negligible additional parameters and has a minimal computational overhead.
Along with improved training times, our learned labels are semantically
meaningful and can reveal hierarchical relationships that may be present in the
data.
Related papers
- Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - Few-Shot Learning with Siamese Networks and Label Tuning [5.006086647446482]
We show that with proper pre-training, Siamese Networks that embed texts and labels offer a competitive alternative.
We introduce label tuning, a simple and computationally efficient approach that allows to adapt the models in a few-shot setup by only changing the label embeddings.
arXiv Detail & Related papers (2022-03-28T11:16:46Z) - Multi-label Iterated Learning for Image Classification with Label
Ambiguity [3.5736176624479654]
We propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-label learning from single labels.
MILe is a simple yet effective procedure that builds a multi-label description of the image by propagating binary predictions.
We show that MILe is effective reducing label noise, achieving state-of-the-art performance on real-world large-scale noisy data such as WebVision.
arXiv Detail & Related papers (2021-11-23T22:10:00Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
We investigate efficient annotation strategies for collecting multi-class classification labels for a large collection of images.
We propose modifications and best practices aimed at minimizing human labeling effort.
Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average.
arXiv Detail & Related papers (2021-04-26T16:29:32Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
We study how architecture affects learning with noisy labels.
We show that training with noisy labels can induce useful hidden representations, even when the model generalizes poorly.
This finding leads to a simple method to improve models trained on noisy labels.
arXiv Detail & Related papers (2020-12-23T18:58:05Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
This paper tackles the problem of learning a finer representation than the one provided by training labels.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods.
arXiv Detail & Related papers (2020-11-25T19:06:26Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Adversarial Learning for Personalized Tag Recommendation [61.76193196463919]
We propose an end-to-end deep network which can be trained on large-scale datasets.
A joint training of user-preference and visual encoding allows the network to efficiently integrate the visual preference with tagging behavior.
We demonstrate the effectiveness of the proposed model on two different large-scale and publicly available datasets.
arXiv Detail & Related papers (2020-04-01T20:41:41Z) - Continual Local Replacement for Few-shot Learning [13.956960291580938]
The goal of few-shot learning is to learn a model that can recognize novel classes based on one or few training data.
It is challenging mainly due to two aspects: (1) it lacks good feature representation of novel classes; (2) a few of labeled data could not accurately represent the true data distribution.
A novel continual local replacement strategy is proposed to address the data deficiency problem.
arXiv Detail & Related papers (2020-01-23T04:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.