OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning
- URL: http://arxiv.org/abs/2209.04851v3
- Date: Sun, 06 Oct 2024 14:25:21 GMT
- Title: OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning
- Authors: Siyuan Li, Zedong Wang, Zicheng Liu, Juanxi Tian, Di Wu, Cheng Tan, Weiyang Jin, Stan Z. Li,
- Abstract summary: We introduce OpenMixup, the first mixup augmentation and benchmark for visual representation learning.
We train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets.
We also open-source our modular backbones, including a collection of popular vision backbones, optimization strategies, and analysis toolkits.
- Score: 53.57075147367114
- License:
- Abstract: Mixup augmentation has emerged as a widely used technique for improving the generalization ability of deep neural networks (DNNs). However, the lack of standardized implementations and benchmarks has impeded recent progress, resulting in poor reproducibility, unfair comparisons, and conflicting insights. In this paper, we introduce OpenMixup, the first mixup augmentation codebase, and benchmark for visual representation learning. Specifically, we train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets of varying scales and granularity, ranging from fine-grained scenarios to complex non-iconic scenes. We also open-source our modular codebase, including a collection of popular vision backbones, optimization strategies, and analysis toolkits, which not only supports the benchmarking but enables broader mixup applications beyond classification, such as self-supervised learning and regression tasks. Through experiments and empirical analysis, we gain observations and insights on mixup performance-efficiency trade-offs, generalization, and optimization behaviors, and thereby identify preferred choices for different needs. To the best of our knowledge, OpenMixup has facilitated several recent studies. We believe this work can further advance reproducible mixup augmentation research and thereby lay a solid ground for future progress in the community. The source code and user documents are available at \url{https://github.com/Westlake-AI/openmixup}.
Related papers
- A Survey on Mixup Augmentations and Beyond [59.578288906956736]
Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted.
This survey presents a comprehensive review of foundational mixup methods and their applications.
arXiv Detail & Related papers (2024-09-08T19:32:22Z) - The Benefits of Mixup for Feature Learning [117.93273337740442]
We first show that Mixup using different linear parameters for features and labels can still achieve similar performance to standard Mixup.
We consider a feature-noise data model and show that Mixup training can effectively learn the rare features from its mixture with the common features.
In contrast, standard training can only learn the common features but fails to learn the rare features, thus suffering from bad performance.
arXiv Detail & Related papers (2023-03-15T08:11:47Z) - MixupE: Understanding and Improving Mixup from Directional Derivative
Perspective [86.06981860668424]
We propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup.
Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures.
arXiv Detail & Related papers (2022-12-27T07:03:52Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
We present the first ever mixture of variational approximations for a normalizing flow-based hierarchical variational autoencoder (VAE) with VampPrior and a PixelCNN decoder network.
We explain this cooperative behavior by drawing a novel connection between VI and adaptive importance sampling.
We obtain state-of-the-art results among VAE architectures in terms of negative log-likelihood on the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-09-30T15:01:35Z) - MixAugment & Mixup: Augmentation Methods for Facial Expression
Recognition [4.273075747204267]
We propose a new data augmentation strategy which is based on Mixup, called MixAugment.
We conduct an extensive experimental study that proves the effectiveness of MixAugment over Mixup and various state-of-the-art methods.
arXiv Detail & Related papers (2022-05-09T17:43:08Z) - MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks [97.08677678499075]
We introduce MixMo, a new framework for learning multi-input multi-output deepworks.
We show that binary mixing in features - particularly with patches from CutMix - enhances results by makingworks stronger and more diverse.
In addition to being easy to implement and adding no cost at inference, our models outperform much costlier data augmented deep ensembles.
arXiv Detail & Related papers (2021-03-10T15:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.