Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering
- URL: http://arxiv.org/abs/2209.04963v4
- Date: Thu, 28 Sep 2023 00:08:53 GMT
- Title: Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering
- Authors: Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, Didar Zowghi, Aurelie
Jacquet
- Abstract summary: We present a Responsible AI Pattern Catalogue based on the results of a Multivocal Literature Review (MLR)
Rather than staying at the principle or algorithm level, we focus on patterns that AI system stakeholders can undertake in practice to ensure that the developed AI systems are responsible throughout the entire governance and engineering lifecycle.
- Score: 20.644494592443245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Responsible AI is widely considered as one of the greatest scientific
challenges of our time and is key to increase the adoption of AI. Recently, a
number of AI ethics principles frameworks have been published. However, without
further guidance on best practices, practitioners are left with nothing much
beyond truisms. Also, significant efforts have been placed at algorithm-level
rather than system-level, mainly focusing on a subset of mathematics-amenable
ethical principles, such as fairness. Nevertheless, ethical issues can arise at
any step of the development lifecycle, cutting across many AI and non-AI
components of systems beyond AI algorithms and models. To operationalize
responsible AI from a system perspective, in this paper, we present a
Responsible AI Pattern Catalogue based on the results of a Multivocal
Literature Review (MLR). Rather than staying at the principle or algorithm
level, we focus on patterns that AI system stakeholders can undertake in
practice to ensure that the developed AI systems are responsible throughout the
entire governance and engineering lifecycle. The Responsible AI Pattern
Catalogue classifies the patterns into three groups: multi-level governance
patterns, trustworthy process patterns, and responsible-AI-by-design product
patterns. These patterns provide systematic and actionable guidance for
stakeholders to implement responsible AI.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
There is a significant gap between high-level AI ethics principles and low-level concrete practices for AI professionals.
We develop a novel holistic framework for Trustworthy AI - designed to bridge the gap between theory and practice.
Our goal is to empower AI professionals to confidently navigate the ethical dimensions of Trustworthy AI.
arXiv Detail & Related papers (2024-02-08T01:05:16Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Operationalising Responsible AI Using a Pattern-Oriented Approach: A
Case Study on Chatbots in Financial Services [11.33499498841489]
Responsible AI is the practice of developing and using AI systems in a way that benefits the humans, society, and environment.
Various responsible AI principles have been released recently, but those principles are very abstract and not practical enough.
To bridge the gap, we adopt a pattern-oriented approach and build a responsible AI pattern catalogue.
arXiv Detail & Related papers (2023-01-03T23:11:03Z) - Towards a Roadmap on Software Engineering for Responsible AI [17.46300715928443]
This paper aims to develop a roadmap on software engineering for responsible AI.
The roadmap focuses on (i) establishing multi-level governance for responsible AI systems, (ii) setting up the development processes incorporating process-oriented practices for responsible AI systems, and (iii) building responsible-AI-by-design into AI systems through system-level architectural style, patterns and techniques.
arXiv Detail & Related papers (2022-03-09T07:01:32Z) - Responsible-AI-by-Design: a Pattern Collection for Designing Responsible
AI Systems [12.825892132103236]
Many ethical regulations, principles, and guidelines for responsible AI have been issued recently.
This paper identifies one missing element as the system-level guidance: how to design the architecture of responsible AI systems.
We present a summary of design patterns that can be embedded into the AI systems as product features to contribute to responsible-AI-by-design.
arXiv Detail & Related papers (2022-03-02T07:30:03Z) - Software Engineering for Responsible AI: An Empirical Study and
Operationalised Patterns [20.747681252352464]
We propose a template that enables AI ethics principles to be operationalised in the form of concrete patterns.
These patterns provide concrete, operationalised guidance that facilitate the development of responsible AI systems.
arXiv Detail & Related papers (2021-11-18T02:18:27Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.