Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries
- URL: http://arxiv.org/abs/2209.05253v1
- Date: Wed, 7 Sep 2022 16:54:15 GMT
- Title: Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries
- Authors: Pengyu Fu, Liang Chu, Zhuoran Hou, Jincheng Hu, Yanjun Huang, and
Yuanjian Zhang
- Abstract summary: Accurately predicting the state of health (SOH) can not only ease the anxiety of users about the battery life but also provide important information for the management of the battery.
This paper presents a prediction method for SOH based on Vision Transformer (ViT) model.
- Score: 1.2468700211588883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, significant progress has been made in transportation
electrification. And lithium-ion batteries (LIB), as the main energy storage
devices, have received widespread attention. Accurately predicting the state of
health (SOH) can not only ease the anxiety of users about the battery life but
also provide important information for the management of the battery. This
paper presents a prediction method for SOH based on Vision Transformer (ViT)
model. First, discrete charging data of a predefined voltage range is used as
an input data matrix. Then, the cycle features of the battery are captured by
the ViT which can obtain the global features, and the SOH is obtained by
combining the cycle features with the full connection (FC) layer. At the same
time, transfer learning (TL) is introduced, and the prediction model based on
source task battery training is further fine-tuned according to the early cycle
data of the target task battery to provide an accurate prediction. Experiments
show that our method can obtain better feature expression compared with
existing deep learning methods so that better prediction effect and transfer
effect can be achieved.
Related papers
- Transformer-based Capacity Prediction for Lithium-ion Batteries with Data Augmentation [0.0]
Lithium-ion batteries are pivotal to technological advancements in transportation, electronics, and clean energy storage.
Current methods for estimating the capacities fail to adequately account for long-term temporal dependencies of key variables.
We develop a transformer-based battery capacity prediction model that accounts for both long-term and short-term patterns in battery data.
arXiv Detail & Related papers (2024-07-22T20:21:40Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
This study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models.
By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE)
Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity.
This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data.
arXiv Detail & Related papers (2024-04-11T09:08:45Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
Batteries are an essential component in a deeply decarbonized future. Understanding battery performance and "useful life" as a function of design and use is of paramount importance.
We present a first step in that direction via deep transformer networks for the prediction of 28 battery state of health descriptors.
arXiv Detail & Related papers (2023-09-18T15:04:40Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Effective Pre-Training Objectives for Transformer-based Autoencoders [97.99741848756302]
We study trade-offs between efficiency, cost and accuracy of Transformer encoders.
We combine features of common objectives and create new effective pre-training approaches.
arXiv Detail & Related papers (2022-10-24T18:39:44Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
We propose a novel vision transformer with latent variables following an informative energy-based prior for salient object detection.
Both the vision transformer network and the energy-based prior model are jointly trained via Markov chain Monte Carlo-based maximum likelihood estimation.
With the generative vision transformer, we can easily obtain a pixel-wise uncertainty map from an image, which indicates the model confidence in predicting saliency from the image.
arXiv Detail & Related papers (2021-12-27T06:04:33Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used.
The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity.
arXiv Detail & Related papers (2021-10-19T01:35:12Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
This paper concerns the machine-learning-enabled state-of-health (SoH) prognosis for Li-ion batteries in electric trucks.
We propose autoregressive integrated modeling average (ARIMA) and supervised learning (bagging with decision tree as the base estimator) for forecasting the battery SoH.
arXiv Detail & Related papers (2021-03-30T12:19:21Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.