It's Not Fairness, and It's Not Fair: The Failure of Distributional
Equality and the Promise of Relational Equality in Complete-Information
Hiring Games
- URL: http://arxiv.org/abs/2209.05602v1
- Date: Mon, 12 Sep 2022 20:35:42 GMT
- Title: It's Not Fairness, and It's Not Fair: The Failure of Distributional
Equality and the Promise of Relational Equality in Complete-Information
Hiring Games
- Authors: Benjamin Fish and Luke Stark
- Abstract summary: existing discrimination and injustice is often the result of unequal social relations, rather than an unequal distribution of resources.
We show how optimizing for existing computational and economic definitions of fairness and equality fail to prevent unequal social relations.
- Score: 2.8935588665357077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing efforts to formulate computational definitions of fairness have
largely focused on distributional notions of equality, where equality is
defined by the resources or decisions given to individuals in the system. Yet
existing discrimination and injustice is often the result of unequal social
relations, rather than an unequal distribution of resources. Here, we show how
optimizing for existing computational and economic definitions of fairness and
equality fail to prevent unequal social relations. To do this, we provide an
example of a self-confirming equilibrium in a simple hiring market that is
relationally unequal but satisfies existing distributional notions of fairness.
In doing so, we introduce a notion of blatant relational unfairness for
complete-information games, and discuss how this definition helps initiate a
new approach to incorporating relational equality into computational systems.
Related papers
- Implementing Fairness: the view from a FairDream [0.0]
We train an AI model and develop our own fairness package FairDream to detect inequalities and then to correct for them.
Our experiments show that it is a property of FairDream to fulfill fairness objectives which are conditional on the ground truth.
arXiv Detail & Related papers (2024-07-20T06:06:24Z) - What's Distributive Justice Got to Do with It? Rethinking Algorithmic Fairness from the Perspective of Approximate Justice [1.8434042562191815]
We argue that in the context of imperfect decision-making systems, we should not only care about what the ideal distribution of benefits/harms among individuals would look like.
This requires us to rethink the way in which we, as algorithmic fairness researchers, view distributive justice and use fairness criteria.
arXiv Detail & Related papers (2024-07-17T11:13:23Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.
We show that enforcing a causal constraint often reduces the disparity between demographic groups.
We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
We propose a new causal decomposition formula for the fairness measures associated with predictive parity.
We show that the notions of statistical and predictive parity are not really mutually exclusive, but complementary and spanning a spectrum of fairness notions.
arXiv Detail & Related papers (2023-06-08T09:23:22Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct.
This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning.
arXiv Detail & Related papers (2023-02-11T14:54:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Impossibility of What? Formal and Substantive Equality in Algorithmic
Fairness [3.42658286826597]
I argue that the dominant, "formal" approach to algorithmic fairness is ill-equipped as a framework for pursuing equality.
I propose an alternative: a "substantive" approach to algorithmic fairness that centers opposition to social hierarchies.
The distinction between formal and substantive algorithmic fairness is exemplified by each approach's responses to the "impossibility of fairness"
arXiv Detail & Related papers (2021-07-09T19:29:57Z) - Distributive Justice and Fairness Metrics in Automated Decision-making:
How Much Overlap Is There? [0.0]
We show that metrics implementing equality of opportunity only apply when resource allocations are based on deservingness, but fail when allocations should reflect concerns about egalitarianism, sufficiency, and priority.
We argue that by cleanly distinguishing between prediction tasks and decision tasks, research on fair machine learning could take better advantage of the rich literature on distributive justice.
arXiv Detail & Related papers (2021-05-04T12:09:26Z) - Statistical Equity: A Fairness Classification Objective [6.174903055136084]
We propose a new fairness definition motivated by the principle of equity.
We formalize our definition of fairness, and motivate it with its appropriate contexts.
We perform multiple automatic and human evaluations to show the effectiveness of our definition.
arXiv Detail & Related papers (2020-05-14T23:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.