Exemplar-Based Image Colorization with A Learning Framework
- URL: http://arxiv.org/abs/2209.05775v1
- Date: Tue, 13 Sep 2022 07:15:25 GMT
- Title: Exemplar-Based Image Colorization with A Learning Framework
- Authors: Zhenfeng Xue, Jiandang Yang, Jie Ren, Yong Liu
- Abstract summary: We propose an automatic colorization method with a learning framework.
It decouples the colorization process and learning process so as to generate various color styles for the same gray image.
It achieves comparable performance against the state-of-the-art colorization algorithms.
- Score: 7.793461393970992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image learning and colorization are hot spots in multimedia domain. Inspired
by the learning capability of humans, in this paper, we propose an automatic
colorization method with a learning framework. This method can be viewed as a
hybrid of exemplar-based and learning-based method, and it decouples the
colorization process and learning process so as to generate various color
styles for the same gray image. The matching process in the exemplar-based
colorization method can be regarded as a parameterized function, and we employ
a large amount of color images as the training samples to fit the parameters.
During the training process, the color images are the ground truths, and we
learn the optimal parameters for the matching process by minimizing the errors
in terms of the parameters for the matching function. To deal with images with
various compositions, a global feature is introduced, which can be used to
classify the images with respect to their compositions, and then learn the
optimal matching parameters for each image category individually. What's more,
a spatial consistency based post-processing is design to smooth the extracted
color information from the reference image to remove matching errors. Extensive
experiments are conducted to verify the effectiveness of the method, and it
achieves comparable performance against the state-of-the-art colorization
algorithms.
Related papers
- Automatic Controllable Colorization via Imagination [55.489416987587305]
We propose a framework for automatic colorization that allows for iterative editing and modifications.
By understanding the content within a grayscale image, we utilize a pre-trained image generation model to generate multiple images that contain the same content.
These images serve as references for coloring, mimicking the process of human experts.
arXiv Detail & Related papers (2024-04-08T16:46:07Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Incorporating Ensemble and Transfer Learning For An End-To-End
Auto-Colorized Image Detection Model [0.0]
This paper presents a novel approach that combines the advantages of transfer and ensemble learning approaches to help reduce training time and resource requirements.
The proposed model shows promising results, with accuracy ranging from 94.55% to 99.13%.
arXiv Detail & Related papers (2023-09-25T19:22:57Z) - ParaColorizer: Realistic Image Colorization using Parallel Generative
Networks [1.7778609937758327]
Grayscale image colorization is a fascinating application of AI for information restoration.
We present a parallel GAN-based colorization framework.
We show the shortcomings of the non-perceptual evaluation metrics commonly used to assess multi-modal problems.
arXiv Detail & Related papers (2022-08-17T13:49:44Z) - Generative Probabilistic Image Colorization [2.110198946293069]
We propose a diffusion-based generative process that trains a sequence of probabilistic models to reverse each step of noise corruption.
Given a line-drawing image as input, our method suggests multiple candidate colorized images.
Our proposed approach performed well not only on color-conditional image generation tasks, but also on some practical image completion and inpainting tasks.
arXiv Detail & Related papers (2021-09-29T16:10:12Z) - TUCaN: Progressively Teaching Colourisation to Capsules [13.50327471049997]
We introduce a novel downsampling upsampling architecture named TUCaN (Tiny UCapsNet)
We pose the problem as a per pixel colour classification task that identifies colours as a bin in a quantized space.
To train the network, in contrast with the standard end to end learning method, we propose the progressive learning scheme to extract the context of objects.
arXiv Detail & Related papers (2021-06-29T08:44:15Z) - Deep Image Compositing [93.75358242750752]
We propose a new method which can automatically generate high-quality image composites without any user input.
Inspired by Laplacian pyramid blending, a dense-connected multi-stream fusion network is proposed to effectively fuse the information from the foreground and background images.
Experiments show that the proposed method can automatically generate high-quality composites and outperforms existing methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-11-04T06:12:24Z) - Image Colorization: A Survey and Dataset [94.59768013860668]
This article presents a comprehensive survey of state-of-the-art deep learning-based image colorization techniques.
It categorizes the existing colorization techniques into seven classes and discusses important factors governing their performance.
We perform an extensive experimental evaluation of existing image colorization methods using both existing datasets and our proposed one.
arXiv Detail & Related papers (2020-08-25T01:22:52Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
We introduce a novel approach to visual correspondence that dynamically composes effective features by leveraging relevant layers conditioned on the images to match.
The proposed method, dubbed Dynamic Hyperpixel Flow, learns to compose hypercolumn features on the fly by selecting a small number of relevant layers from a deep convolutional neural network.
arXiv Detail & Related papers (2020-07-21T04:03:22Z) - Instance-aware Image Colorization [51.12040118366072]
In this paper, we propose a method for achieving instance-aware colorization.
Our network architecture leverages an off-the-shelf object detector to obtain cropped object images.
We use a similar network to extract the full-image features and apply a fusion module to predict the final colors.
arXiv Detail & Related papers (2020-05-21T17:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.