SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation
- URL: http://arxiv.org/abs/2209.05924v1
- Date: Tue, 13 Sep 2022 12:12:19 GMT
- Title: SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation
- Authors: Zhuo Su and Max Welling and Matti pietik\"ainen and Li Liu
- Abstract summary: The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
- Score: 65.4396959244269
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Efficiency and robustness are increasingly needed for applications on 3D
point clouds, with the ubiquitous use of edge devices in scenarios like
autonomous driving and robotics, which often demand real-time and reliable
responses. The paper tackles the challenge by designing a general framework to
construct 3D learning architectures with SO(3) equivariance and network
binarization. However, a naive combination of equivariant networks and
binarization either causes sub-optimal computational efficiency or geometric
ambiguity. We propose to locate both scalar and vector features in our networks
to avoid both cases. Precisely, the presence of scalar features makes the major
part of the network binarizable, while vector features serve to retain rich
structural information and ensure SO(3) equivariance. The proposed approach can
be applied to general backbones like PointNet and DGCNN. Meanwhile, experiments
on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated
that the method achieves a great trade-off between efficiency, rotation
robustness, and accuracy. The codes are available at
https://github.com/zhuoinoulu/svnet.
Related papers
- Focal Sparse Convolutional Networks for 3D Object Detection [121.45950754511021]
We introduce two new modules to enhance the capability of Sparse CNNs.
They are focal sparse convolution (Focals Conv) and its multi-modal variant of focal sparse convolution with fusion.
For the first time, we show that spatially learnable sparsity in sparse convolution is essential for sophisticated 3D object detection.
arXiv Detail & Related papers (2022-04-26T17:34:10Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z) - Training or Architecture? How to Incorporate Invariance in Neural
Networks [14.162739081163444]
We propose a method for provably invariant network architectures with respect to group actions.
In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network.
We analyze properties of such approaches, extend them to equivariant networks, and demonstrate their advantages in terms of robustness as well as computational efficiency in several numerical examples.
arXiv Detail & Related papers (2021-06-18T10:31:00Z) - SALA: Soft Assignment Local Aggregation for Parameter Efficient 3D
Semantic Segmentation [65.96170587706148]
We focus on designing a point local aggregation function that yields parameter efficient networks for 3D point cloud semantic segmentation.
We explore the idea of using learnable neighbor-to-grid soft assignment in grid-based aggregation functions.
arXiv Detail & Related papers (2020-12-29T20:16:37Z) - SpinNet: Learning a General Surface Descriptor for 3D Point Cloud
Registration [57.28608414782315]
We introduce a new, yet conceptually simple, neural architecture, termed SpinNet, to extract local features.
Experiments on both indoor and outdoor datasets demonstrate that SpinNet outperforms existing state-of-the-art techniques.
arXiv Detail & Related papers (2020-11-24T15:00:56Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDAR-based panoptic segmentation aims to parse both objects and scenes in a unified manner.
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-24T08:44:46Z) - Gram Regularization for Multi-view 3D Shape Retrieval [3.655021726150368]
We propose a novel regularization term called Gram regularization.
By forcing the variance between weight kernels to be large, the regularizer can help to extract discriminative features.
The proposed Gram regularization is data independent and can converge stably and quickly without bells and whistles.
arXiv Detail & Related papers (2020-11-16T05:37:24Z) - FADNet: A Fast and Accurate Network for Disparity Estimation [18.05392578461659]
We propose an efficient and accurate deep network for disparity estimation named FADNet.
It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.
arXiv Detail & Related papers (2020-03-24T10:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.