Viewer-Centred Surface Completion for Unsupervised Domain Adaptation in
3D Object Detection
- URL: http://arxiv.org/abs/2209.06407v1
- Date: Wed, 14 Sep 2022 04:22:20 GMT
- Title: Viewer-Centred Surface Completion for Unsupervised Domain Adaptation in
3D Object Detection
- Authors: Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo Nebot, Stewart
Worrall
- Abstract summary: 3D detectors tend to overfit datasets they are trained on. This causes a drastic decrease in accuracy when the detectors are trained on one dataset and tested on another.
We address this in our approach, SEE-VCN, by designing a novel viewer-centred surface completion network (VCN)
With SEE-VCN, we obtain a unified representation of objects across datasets, allowing the network to focus on learning geometry, rather than overfitting on scan patterns.
- Score: 7.489722641968593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Every autonomous driving dataset has a different configuration of sensors,
originating from distinct geographic regions and covering various scenarios. As
a result, 3D detectors tend to overfit the datasets they are trained on. This
causes a drastic decrease in accuracy when the detectors are trained on one
dataset and tested on another. We observe that lidar scan pattern differences
form a large component of this reduction in performance. We address this in our
approach, SEE-VCN, by designing a novel viewer-centred surface completion
network (VCN) to complete the surfaces of objects of interest within an
unsupervised domain adaptation framework, SEE. With SEE-VCN, we obtain a
unified representation of objects across datasets, allowing the network to
focus on learning geometry, rather than overfitting on scan patterns. By
adopting a domain-invariant representation, SEE-VCN can be classed as a
multi-target domain adaptation approach where no annotations or re-training is
required to obtain 3D detections for new scan patterns. Through extensive
experiments, we show that our approach outperforms previous domain adaptation
methods in multiple domain adaptation settings. Our code and data are available
at https://github.com/darrenjkt/SEE-VCN.
Related papers
- Multimodal 3D Object Detection on Unseen Domains [37.142470149311904]
Domain adaptation approaches assume access to unannotated samples from the test distribution to address this problem.
We propose CLIX$text3D$, a multimodal fusion and supervised contrastive learning framework for 3D object detection.
We show that CLIX$text3D$ yields state-of-the-art domain generalization performance under multiple dataset shifts.
arXiv Detail & Related papers (2024-04-17T21:47:45Z) - M&M3D: Multi-Dataset Training and Efficient Network for Multi-view 3D
Object Detection [2.5158048364984564]
I proposed a network structure for multi-view 3D object detection using camera-only data and a Bird's-Eye-View map.
My work is based on a current key challenge domain adaptation and visual data transfer.
My study utilizes 3D information as available semantic information and 2D multi-view image features blending into the visual-language transfer design.
arXiv Detail & Related papers (2023-11-02T04:28:51Z) - T-UDA: Temporal Unsupervised Domain Adaptation in Sequential Point
Clouds [2.5291108878852864]
unsupervised domain adaptation (UDA) methods adapt models trained on one (source) domain with annotations available to another (target) domain for which only unannotated data are available.
We introduce a novel domain adaptation method that leverages the best of both trends. Dubbed T-UDA for "temporal UDA", such a combination yields massive performance gains for the task of 3D semantic segmentation of driving scenes.
arXiv Detail & Related papers (2023-09-15T10:47:12Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - GPA-3D: Geometry-aware Prototype Alignment for Unsupervised Domain
Adaptive 3D Object Detection from Point Clouds [19.1949602403668]
Existing domain adaptive 3D detection methods do not adequately consider the problem of the distributional discrepancy in feature space.
In this work, we propose a novel unsupervised domain adaptive textbf3D detection framework, which explicitly leverages the intrinsic geometric relationship from point cloud objects to reduce the feature discrepancy.
The evaluation results obtained on various benchmarks, including nuScenes and KITTI, demonstrate the superiority of our GPA-3D over the state-of-the-art approaches for different adaptation scenarios.
arXiv Detail & Related papers (2023-08-16T04:15:21Z) - MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection
Generalization [3.8243923744440926]
3D object detection models trained on a source dataset with a specific point distribution have shown difficulties in generalizing to unseen datasets.
We leverage the information available from several annotated source datasets with our Multi-Dataset Training for 3D Object Detection (MDT3D) method.
We show how we managed the mix of datasets during training and finally introduce a new cross-dataset augmentation method: cross-dataset object injection.
arXiv Detail & Related papers (2023-08-02T08:20:00Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
We present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D)
SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage.
Experiments show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label.
arXiv Detail & Related papers (2022-12-06T09:32:44Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.