Learning state correspondence of reinforcement learning tasks for
knowledge transfer
- URL: http://arxiv.org/abs/2209.06604v1
- Date: Wed, 14 Sep 2022 12:42:59 GMT
- Title: Learning state correspondence of reinforcement learning tasks for
knowledge transfer
- Authors: Marko Ruman and Tatiana V. Guy
- Abstract summary: Generalizing and reusing knowledge are the fundamental requirements for creating a truly intelligent agent.
This work proposes a general method for one-to-one transfer learning based on generative adversarial network model tailored to RL task.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning has shown an ability to achieve super-human
performance in solving complex reinforcement learning (RL) tasks only from
raw-pixels. However, it fails to reuse knowledge from previously learnt tasks
to solve new, unseen ones. Generalizing and reusing knowledge are the
fundamental requirements for creating a truly intelligent agent. This work
proposes a general method for one-to-one transfer learning based on generative
adversarial network model tailored to RL task.
Related papers
- Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Learning with Recoverable Forgetting [77.56338597012927]
Learning wIth Recoverable Forgetting explicitly handles the task- or sample-specific knowledge removal and recovery.
Specifically, LIRF brings in two innovative schemes, namely knowledge deposit and withdrawal.
We conduct experiments on several datasets, and demonstrate that the proposed LIRF strategy yields encouraging results with gratifying generalization capability.
arXiv Detail & Related papers (2022-07-17T16:42:31Z) - Renaissance Robot: Optimal Transport Policy Fusion for Learning Diverse
Skills [28.39150937658635]
We propose a post-hoc technique for policy fusion using Optimal Transport theory.
This provides an improved weights initialisation of the neural network policy for learning new tasks.
Our results show that specialised knowledge can be unified into a "Renaissance agent", allowing for quicker learning of new skills.
arXiv Detail & Related papers (2022-07-03T08:15:41Z) - Multi-Source Transfer Learning for Deep Model-Based Reinforcement
Learning [0.6445605125467572]
A crucial challenge in reinforcement learning is to reduce the number of interactions with the environment that an agent requires to master a given task.
Transfer learning proposes to address this issue by re-using knowledge from previously learned tasks.
The goal of this paper is to address these issues with modular multi-source transfer learning techniques.
arXiv Detail & Related papers (2022-05-28T12:04:52Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Fractional Transfer Learning for Deep Model-Based Reinforcement Learning [0.966840768820136]
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks.
Recent progress in model-based RL allows agents to be much more data-efficient.
We present a simple alternative approach: fractional transfer learning.
arXiv Detail & Related papers (2021-08-14T12:44:42Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
We propose a method for building a continuous knowledge base that can store knowledge imported from multiple neural networks.
Experiments on text classification show promising results.
We import the knowledge from multiple models to the knowledge base, from which the fused knowledge is exported back to a single model.
arXiv Detail & Related papers (2020-12-25T12:27:44Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Learning Transferable Concepts in Deep Reinforcement Learning [0.7161783472741748]
We show that learning discrete representations of sensory inputs can provide a high-level abstraction that is common across multiple tasks.
In particular, we show that it is possible to learn such representations by self-supervision, following an information theoretic approach.
Our method is able to learn concepts in locomotive and optimal control tasks that increase the sample efficiency in both known and unknown tasks.
arXiv Detail & Related papers (2020-05-16T04:45:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.