An ensemble Multi-Agent System for non-linear classification
- URL: http://arxiv.org/abs/2209.06824v1
- Date: Wed, 14 Sep 2022 08:22:11 GMT
- Title: An ensemble Multi-Agent System for non-linear classification
- Authors: Thibault Fourez (IRIT-SMAC), Nicolas Verstaevel (IRIT-SMAC),
Fr\'ed\'eric Migeon (IRIT-SMAC), Fr\'ed\'eric Schettini, Frederic Amblard
(IRIT-SMAC)
- Abstract summary: smapy is an ensemble based AMAS implementation for mobility prediction.
We show that it is possible to use linear models for nonlinear classification on a benchmark transport mode detection dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-Adaptive Multi-Agent Systems (AMAS) transform machine learning problems
into problems of local cooperation between agents. We present smapy, an
ensemble based AMAS implementation for mobility prediction, whose agents are
provided with machine learning models in addition to their cooperation rules.
With a detailed methodology, we show that it is possible to use linear models
for nonlinear classification on a benchmark transport mode detection dataset,
if they are integrated in a cooperative multi-agent structure. The results
obtained show a significant improvement of the performance of linear models in
non-linear contexts thanks to the multi-agent approach.
Related papers
- Adaptive Transfer Clustering: A Unified Framework [2.3144964550307496]
We propose an adaptive transfer clustering (ATC) algorithm that automatically leverages the commonality in the presence of unknown discrepancy.
It applies to a broad class of statistical models including Gaussian mixture models, block models, and latent class models.
arXiv Detail & Related papers (2024-10-28T17:57:06Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
We introduce a Multi-class Implicit Neural representation Transformer for unified Anomaly Detection (MINT-AD)
By learning the multi-class distributions, the model generates class-aware query embeddings for the transformer decoder.
MINT-AD can project category and position information into a feature embedding space, further supervised by classification and prior probability loss functions.
arXiv Detail & Related papers (2024-03-21T08:08:31Z) - Relational Reasoning via Set Transformers: Provable Efficiency and
Applications to MARL [154.13105285663656]
A cooperative Multi-A gent R einforcement Learning (MARL) with permutation invariant agents framework has achieved tremendous empirical successes in real-world applications.
Unfortunately, the theoretical understanding of this MARL problem is lacking due to the curse of many agents and the limited exploration of the relational reasoning in existing works.
We prove that the suboptimality gaps of the model-free and model-based algorithms are independent of and logarithmic in the number of agents respectively, which mitigates the curse of many agents.
arXiv Detail & Related papers (2022-09-20T16:42:59Z) - How to solve a classification problem using a cooperative tiling
Multi-Agent System? [0.0]
We propose a framework to transform a classification problem into a cooperative tiling of the input variable space.
We show that it is possible to use linear classifiers for online non-linear classification on three benchmark toy problems chosen for their different levels of linear separability.
arXiv Detail & Related papers (2022-09-15T09:35:33Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.