Page curves and typical entanglement in linear optics
- URL: http://arxiv.org/abs/2209.06838v2
- Date: Fri, 19 May 2023 02:59:17 GMT
- Title: Page curves and typical entanglement in linear optics
- Authors: Joseph T. Iosue, Adam Ehrenberg, Dominik Hangleiter, Abhinav
Deshpande, Alexey V. Gorshkov
- Abstract summary: We study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary.
We prove various results on the typicality of entanglement as measured by the R'enyi-2 entropy.
Our main make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bosonic Gaussian states are a special class of quantum states in an infinite
dimensional Hilbert space that are relevant to universal continuous-variable
quantum computation as well as to near-term quantum sampling tasks such as
Gaussian Boson Sampling. In this work, we study entanglement within a set of
squeezed modes that have been evolved by a random linear optical unitary. We
first derive formulas that are asymptotically exact in the number of modes for
the R\'enyi-2 Page curve (the average R\'enyi-2 entropy of a subsystem of a
pure bosonic Gaussian state) and the corresponding Page correction (the average
information of the subsystem) in certain squeezing regimes. We then prove
various results on the typicality of entanglement as measured by the R\'enyi-2
entropy by studying its variance. Using the aforementioned results for the
R\'enyi-2 entropy, we upper and lower bound the von Neumann entropy Page curve
and prove certain regimes of entanglement typicality as measured by the von
Neumann entropy. Our main proofs make use of a symmetry property obeyed by the
average and the variance of the entropy that dramatically simplifies the
averaging over unitaries. In this light, we propose future research directions
where this symmetry might also be exploited. We conclude by discussing
potential applications of our results and their generalizations to Gaussian
Boson Sampling and to illuminating the relationship between entanglement and
computational complexity.
Related papers
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Curvature of Gaussian quantum states [0.0]
The space of quantum states can be endowed with a metric structure using the second order derivatives of the relative entropy, giving rise to the so-called Kubo-Mori-Bogoliubov inner product.
arXiv Detail & Related papers (2024-04-15T09:14:10Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Towards Entanglement Entropy of Random Large-N Theories [0.0]
We use the replica approach and the notion of shifted Matsubara frequency to compute von Neumann and R'enyi entanglement entropies.
We demonstrate the flexibility of the method by applying it to examples of a two-site problem in presence of decoherence.
arXiv Detail & Related papers (2023-03-03T18:21:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Integral formula for quantum relative entropy implies data processing
inequality [0.0]
We prove the monotonicity of quantum relative entropy under trace-preserving positive linear maps.
For a simple application of such monotonicities, we consider any divergence' that is non-increasing under quantum measurements.
An argument due to Hiai, Ohya, and Tsukada is used to show that the infimum of such a divergence' on pairs of quantum states with prescribed trace distance is the same as the corresponding infimum on pairs of binary classical states.
arXiv Detail & Related papers (2022-08-25T16:32:02Z) - Kullback-Leibler and Renyi divergences in reproducing kernel Hilbert
space and Gaussian process settings [0.0]
We present formulations for regularized Kullback-Leibler and R'enyi divergences via the Alpha Log-Determinant (Log-Det) divergences.
For characteristic kernels, the first setting leads to divergences between arbitrary Borel probability measures on a complete, separable metric space.
We show that the Alpha Log-Det divergences are continuous in the Hilbert-Schmidt norm, which enables us to apply laws of large numbers for Hilbert space-valued random variables.
arXiv Detail & Related papers (2022-07-18T06:40:46Z) - Symmetry-resolved Page curves [0.0]
We study a natural extension in the presence of a conservation law and introduce the symmetry-resolved Page curves.
We derive explicit analytic formulae for two important statistical ensembles with a $U(1)$-symmetry.
arXiv Detail & Related papers (2022-06-10T13:22:14Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.