Robust Implementation of Foreground Extraction and Vessel Segmentation
for X-ray Coronary Angiography Image Sequence
- URL: http://arxiv.org/abs/2209.07237v1
- Date: Thu, 15 Sep 2022 12:07:09 GMT
- Title: Robust Implementation of Foreground Extraction and Vessel Segmentation
for X-ray Coronary Angiography Image Sequence
- Authors: Zeyu Fu, Zhuang Fu, Chenzhuo Lv, Jun Yan
- Abstract summary: The extraction of contrast-filled vessels from X-ray coronary angiography(XCA) image sequence has important clinical significance.
We propose a novel method for vessel layer extraction based on tensor robust principal component analysis(TRPCA)
For the vessel images with uneven contrast distribution, a two-stage region growth(TSRG) method is utilized for vessel enhancement and segmentation.
- Score: 4.653742319057035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extraction of contrast-filled vessels from X-ray coronary
angiography(XCA) image sequence has important clinical significance for
intuitively diagnosis and therapy. In this study, XCA image sequence O is
regarded as a three-dimensional tensor input, vessel layer H is a sparse
tensor, and background layer B is a low-rank tensor. Using tensor nuclear
norm(TNN) minimization, a novel method for vessel layer extraction based on
tensor robust principal component analysis(TRPCA) is proposed. Furthermore,
considering the irregular movement of vessels and the dynamic interference of
surrounding irrelevant tissues, the total variation(TV) regularized
spatial-temporal constraint is introduced to separate the dynamic background E.
Subsequently, for the vessel images with uneven contrast distribution, a
two-stage region growth(TSRG) method is utilized for vessel enhancement and
segmentation. A global threshold segmentation is used as the pre-processing to
obtain the main branch, and the Radon-Like features(RLF) filter is used to
enhance and connect broken minor segments, the final vessel mask is constructed
by combining the two intermediate results. We evaluated the visibility of
TV-TRPCA algorithm for foreground extraction and the accuracy of TSRG algorithm
for vessel segmentation on real clinical XCA image sequences and third-party
database. Both qualitative and quantitative results verify the superiority of
the proposed methods over the existing state-of-the-art approaches.
Related papers
- An automated framework for brain vessel centerline extraction from CTA
images [28.173407996203153]
We propose an automated framework for brain vessel centerline extraction from CTA images.
The proposed framework outperforms state-of-the-art methods in terms of average symmetric centerline distance (ASCD) and overlap (OV)
Subgroup analyses suggest that the proposed framework holds promise in clinical applications for stroke treatment.
arXiv Detail & Related papers (2024-01-13T11:01:00Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.