Does CLIP Know My Face?
- URL: http://arxiv.org/abs/2209.07341v4
- Date: Tue, 9 Jul 2024 13:54:11 GMT
- Title: Does CLIP Know My Face?
- Authors: Dominik Hintersdorf, Lukas Struppek, Manuel Brack, Felix Friedrich, Patrick Schramowski, Kristian Kersting,
- Abstract summary: We introduce a novel method to assess privacy for multi-modal models, specifically vision-language models like CLIP.
The proposed Identity Inference Attack (IDIA) reveals whether an individual was included in the training data by querying the model with images of the same person.
Our results highlight the need for stronger privacy protection in large-scale models and suggest that IDIAs can be used to prove the unauthorized use of data for training and to enforce privacy laws.
- Score: 31.21910897081894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rise of deep learning in various applications, privacy concerns around the protection of training data have become a critical area of research. Whereas prior studies have focused on privacy risks in single-modal models, we introduce a novel method to assess privacy for multi-modal models, specifically vision-language models like CLIP. The proposed Identity Inference Attack (IDIA) reveals whether an individual was included in the training data by querying the model with images of the same person. Letting the model choose from a wide variety of possible text labels, the model reveals whether it recognizes the person and, therefore, was used for training. Our large-scale experiments on CLIP demonstrate that individuals used for training can be identified with very high accuracy. We confirm that the model has learned to associate names with depicted individuals, implying the existence of sensitive information that can be extracted by adversaries. Our results highlight the need for stronger privacy protection in large-scale models and suggest that IDIAs can be used to prove the unauthorized use of data for training and to enforce privacy laws.
Related papers
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Membership Inference Attacks and Privacy in Topic Modeling [3.503833571450681]
We propose an attack against topic models that can confidently identify members of the training data.
We propose a framework for private topic modeling that incorporates DP vocabulary selection as a pre-processing step.
arXiv Detail & Related papers (2024-03-07T12:43:42Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Can Language Models be Instructed to Protect Personal Information? [30.187731765653428]
We introduce PrivQA -- a benchmark to assess the privacy/utility trade-off when a model is instructed to protect specific categories of personal information in a simulated scenario.
We find that adversaries can easily circumvent these protections with simple jailbreaking methods through textual and/or image inputs.
We believe PrivQA has the potential to support the development of new models with improved privacy protections, as well as the adversarial robustness of these protections.
arXiv Detail & Related papers (2023-10-03T17:30:33Z) - Students Parrot Their Teachers: Membership Inference on Model
Distillation [54.392069096234074]
We study the privacy provided by knowledge distillation to both the teacher and student training sets.
Our attacks are strongest when student and teacher sets are similar, or when the attacker can poison the teacher set.
arXiv Detail & Related papers (2023-03-06T19:16:23Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning (FL) is a setting for training machine learning models in distributed environments.
We propose a novel method, CANIFE, that uses carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round.
arXiv Detail & Related papers (2022-10-06T13:30:16Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
This paper studies a model that protects the privacy of individuals' sensitive information while also allowing it to learn non-discriminatory predictors.
A key characteristic of the proposed model is to enable the adoption of off-the-selves and non-private fair models to create a privacy-preserving and fair model.
arXiv Detail & Related papers (2022-04-11T14:42:54Z) - Personalized PATE: Differential Privacy for Machine Learning with
Individual Privacy Guarantees [1.2691047660244335]
We propose three novel methods to support training an ML model with different personalized privacy guarantees within the training data.
Our experiments show that our personalized privacy methods yield higher accuracy models than the non-personalized baseline.
arXiv Detail & Related papers (2022-02-21T20:16:27Z) - FaceLeaks: Inference Attacks against Transfer Learning Models via
Black-box Queries [2.7564955518050693]
We investigate if one can leak or infer private information without interacting with the teacher model directly.
We propose novel strategies to infer from aggregate-level information.
Our study indicates that information leakage is a real privacy threat to the transfer learning framework widely used in real-life situations.
arXiv Detail & Related papers (2020-10-27T03:02:40Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.