A Geometric Perspective on Variational Autoencoders
- URL: http://arxiv.org/abs/2209.07370v1
- Date: Thu, 15 Sep 2022 15:32:43 GMT
- Title: A Geometric Perspective on Variational Autoencoders
- Authors: Cl\'ement Chadebec, St\'ephanie Allassonni\`ere
- Abstract summary: This paper introduces a new interpretation of the Variational Autoencoder framework by taking a fully geometric point of view.
We show that using this scheme can make a vanilla VAE competitive and even better than more advanced versions on several benchmark datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new interpretation of the Variational Autoencoder
framework by taking a fully geometric point of view. We argue that vanilla VAE
models unveil naturally a Riemannian structure in their latent space and that
taking into consideration those geometrical aspects can lead to better
interpolations and an improved generation procedure. This new proposed sampling
method consists in sampling from the uniform distribution deriving
intrinsically from the learned Riemannian latent space and we show that using
this scheme can make a vanilla VAE competitive and even better than more
advanced versions on several benchmark datasets. Since generative models are
known to be sensitive to the number of training samples we also stress the
method's robustness in the low data regime.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for non-rigid shapes.
We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets.
arXiv Detail & Related papers (2023-08-16T14:25:30Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Unveiling the Latent Space Geometry of Push-Forward Generative Models [24.025975236316846]
Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs)
This work explores the latent space of such deep generative models.
A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions.
arXiv Detail & Related papers (2022-07-21T15:29:35Z) - Multi-level Latent Space Structuring for Generative Control [53.240701050423155]
We propose to leverage the StyleGAN generative architecture to devise a new truncation technique.
We do so by learning to re-generate W-space, the extended intermediate latent space of StyleGAN, using a learnable mixture of Gaussians.
The resulting truncation scheme is more faithful to the original untruncated samples and allows a better trade-off between quality and diversity.
arXiv Detail & Related papers (2022-02-11T21:26:17Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - LOCA: LOcal Conformal Autoencoder for standardized data coordinates [6.608924227377152]
We present a method for learning an embedding in $mathbbRd$ that is isometric to the latent variables of the manifold.
Our embedding is obtained using a LOcal Conformal Autoencoder (LOCA), an algorithm that constructs an embedding to rectify deformations.
We also apply LOCA to single-site Wi-Fi localization data, and to $3$-dimensional curved surface estimation.
arXiv Detail & Related papers (2020-04-15T17:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.