Sequential Bayesian Optimization for Adaptive Informative Path Planning
with Multimodal Sensing
- URL: http://arxiv.org/abs/2209.07660v1
- Date: Fri, 16 Sep 2022 00:50:36 GMT
- Title: Sequential Bayesian Optimization for Adaptive Informative Path Planning
with Multimodal Sensing
- Authors: Joshua Ott, Edward Balaban, Mykel J. Kochenderfer
- Abstract summary: We consider the problem of an agent equipped with multiple sensors, each with different sensing accuracy and energy costs.
The agent's goal is to explore the environment and gather information subject to its resource constraints in unknown, partially observable environments.
We formulate the AIPPMS problem as a belief Markov decision process with Gaussian process beliefs and solve it using a sequential Bayesian optimization approach with online planning.
- Score: 34.86734745942814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adaptive Informative Path Planning with Multimodal Sensing (AIPPMS) considers
the problem of an agent equipped with multiple sensors, each with different
sensing accuracy and energy costs. The agent's goal is to explore the
environment and gather information subject to its resource constraints in
unknown, partially observable environments. Previous work has focused on the
less general Adaptive Informative Path Planning (AIPP) problem, which considers
only the effect of the agent's movement on received observations. The AIPPMS
problem adds additional complexity by requiring that the agent reasons jointly
about the effects of sensing and movement while balancing resource constraints
with information objectives. We formulate the AIPPMS problem as a belief Markov
decision process with Gaussian process beliefs and solve it using a sequential
Bayesian optimization approach with online planning. Our approach consistently
outperforms previous AIPPMS solutions by more than doubling the average reward
received in almost every experiment while also reducing the root-mean-square
error in the environment belief by 50%. We completely open-source our
implementation to aid in further development and comparison.
Related papers
- Increasing the Value of Information During Planning in Uncertain Environments [0.0]
We develop a new algorithm that improves upon state-of-the-art online planning by better reflecting on the value of actions that gather information.
Results indicate that our new algorithm performs significantly better than POMCP.
arXiv Detail & Related papers (2024-09-14T22:04:34Z) - An Improved Artificial Fish Swarm Algorithm for Solving the Problem of
Investigation Path Planning [8.725702964289479]
We propose a chaotic artificial fish swarm algorithm based on multiple population differential evolution (DE-CAFSA)
We incorporate adaptive field of view and step size adjustments, replace random behavior with the 2-opt operation, and introduce chaos theory and sub-optimal solutions.
Experimental results demonstrate that DE-CAFSA outperforms other algorithms on various public datasets of different sizes.
arXiv Detail & Related papers (2023-10-20T09:35:51Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions.
Our approach is built upon the dual reformulation of the EOT problem based on weak OT.
arXiv Detail & Related papers (2023-10-02T11:24:36Z) - Light Unbalanced Optimal Transport [69.18220206873772]
Existing solvers are either based on principles or heavy-weighted with complex optimization objectives involving several neural networks.
We show that our solver provides a universal approximation of UEOT solutions and obtains its generalization bounds.
arXiv Detail & Related papers (2023-03-14T15:44:40Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
This paper proposes a novel model of sequential information design, namely the Markov persuasion processes (MPPs)
Planning in MPPs faces the unique challenge in finding a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term cumulative utilities of the sender.
We design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles.
arXiv Detail & Related papers (2022-02-22T05:41:43Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity,
and Optimism [33.116006446428756]
We study multi-agent online learning problems in the presence of delays and asynchronicities.
We derive adaptive learning strategies with optimal regret bounds, at both the agent and network levels.
arXiv Detail & Related papers (2020-12-21T18:55:55Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
We propose a multi-agent reinforcement learning (MARL) approach that can adapt to profound changes in the scenario parameters defining the data harvesting mission.
We show that our proposed network architecture enables the agents to cooperate effectively by carefully dividing the data collection task among themselves.
arXiv Detail & Related papers (2020-10-23T14:59:30Z) - Adaptive Informative Path Planning with Multimodal Sensing [36.16721115973077]
AIPPMS (MS for Multimodal Sensing)
We frame AIPPMS as a Partially Observable Markov Decision Process (POMDP) and solve it with online planning.
We evaluate our method on two domains: a simulated search-and-rescue scenario and a challenging extension to the classic RockSample problem.
arXiv Detail & Related papers (2020-03-21T20:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.