Case Studies for Computing Density of Reachable States for Safe
Autonomous Motion Planning
- URL: http://arxiv.org/abs/2209.08073v1
- Date: Fri, 16 Sep 2022 17:38:24 GMT
- Title: Case Studies for Computing Density of Reachable States for Safe
Autonomous Motion Planning
- Authors: Yue Meng, Zeng Qiu, Md Tawhid Bin Waez, Chuchu Fan
- Abstract summary: Density of the reachable states can help understand the risk of safety-critical systems.
Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online.
In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties.
- Score: 8.220217498103313
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Density of the reachable states can help understand the risk of
safety-critical systems, especially in situations when worst-case reachability
is too conservative. Recent work provides a data-driven approach to compute the
density distribution of autonomous systems' forward reachable states online. In
this paper, we study the use of such approach in combination with model
predictive control for verifiable safe path planning under uncertainties. We
first use the learned density distribution to compute the risk of collision
online. If such risk exceeds the acceptable threshold, our method will plan for
a new path around the previous trajectory, with the risk of collision below the
threshold. Our method is well-suited to handle systems with uncertainties and
complicated dynamics as our data-driven approach does not need an analytical
form of the systems' dynamics and can estimate forward state density with an
arbitrary initial distribution of uncertainties. We design two challenging
scenarios (autonomous driving and hovercraft control) for safe motion planning
in environments with obstacles under system uncertainties. We first show that
our density estimation approach can reach a similar accuracy as the
Monte-Carlo-based method while using only 0.01X training samples. By leveraging
the estimated risk, our algorithm achieves the highest success rate in goal
reaching when enforcing the safety rate above 0.99.
Related papers
- Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
We leverage an online attack on the vulnerable data collection process.
From the game-theoretic perspective, the confrontation scenario is formulated as a distributionally robust game.
The proposed method manipulates the results of rank aggregation methods in a sequential manner.
arXiv Detail & Related papers (2024-07-02T03:31:21Z) - Verification of Neural Reachable Tubes via Scenario Optimization and Conformal Prediction [10.40899456282141]
Hamilton-Jacobi reachability analysis is a popular formal verification tool for providing such guarantees.
DeepReach has been used to synthesize reachable tubes and safety controllers for high-dimensional systems.
We propose two verification methods, based on robust scenario optimization and conformal prediction, to provide probabilistic safety guarantees.
arXiv Detail & Related papers (2023-12-14T02:03:36Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
Diffusion model-based approaches have shown promise in data-driven planning, but there are no safety guarantees.
We propose a new method, called SafeDiffuser, to ensure diffusion probabilistic models satisfy specifications.
We test our method on a series of safe planning tasks, including maze path generation, legged robot locomotion, and 3D space manipulation.
arXiv Detail & Related papers (2023-05-31T19:38:12Z) - Safe motion planning with environment uncertainty [1.4824891788575418]
We present an approach for safe motion planning under robot state and environment uncertainties.
We first develop an approach that accounts for the landmark uncertainties during robot localization.
We then extend the state-of-the-art by computing an exact expression for the collision probability.
arXiv Detail & Related papers (2023-05-10T09:29:41Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Learning Density Distribution of Reachable States for Autonomous Systems [7.900957413198177]
State density distribution can be leveraged for safety-related problems.
We propose a data-driven method to compute the density distribution of reachable states for nonlinear and even black-box systems.
arXiv Detail & Related papers (2021-09-14T14:43:59Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
Many real-world problems of interest exhibit non-stationarity, and when stakes are high, the cost associated with a false stationarity assumption may be unacceptable.
We take the first steps towards ensuring safety, with high confidence, for smoothly-varying non-stationary decision problems.
Our proposed method extends a type of safe algorithm, called a Seldonian algorithm, through a synthesis of model-free reinforcement learning with time-series analysis.
arXiv Detail & Related papers (2020-10-23T20:13:51Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
This manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees.
The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space.
arXiv Detail & Related papers (2020-04-26T08:53:37Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.