Infrared: A Meta Bug Detector
- URL: http://arxiv.org/abs/2209.08510v1
- Date: Sun, 18 Sep 2022 09:08:51 GMT
- Title: Infrared: A Meta Bug Detector
- Authors: Chi Zhang, Yu Wang, Linzhang Wang
- Abstract summary: We propose a new approach, called meta bug detection, which offers three crucial advantages over existing learning-based bug detectors.
Our evaluation shows our meta bug detector (MBD) is effective in catching a variety of bugs including null pointer dereference, array index out-of-bound, file handle leak, and even data races in concurrent programs.
- Score: 10.541969253100815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent breakthroughs in deep learning methods have sparked a wave of
interest in learning-based bug detectors. Compared to the traditional static
analysis tools, these bug detectors are directly learned from data, thus,
easier to create. On the other hand, they are difficult to train, requiring a
large amount of data which is not readily available. In this paper, we propose
a new approach, called meta bug detection, which offers three crucial
advantages over existing learning-based bug detectors: bug-type generic (i.e.,
capable of catching the types of bugs that are totally unobserved during
training), self-explainable (i.e., capable of explaining its own prediction
without any external interpretability methods) and sample efficient (i.e.,
requiring substantially less training data than standard bug detectors). Our
extensive evaluation shows our meta bug detector (MBD) is effective in catching
a variety of bugs including null pointer dereference, array index out-of-bound,
file handle leak, and even data races in concurrent programs; in the process
MBD also significantly outperforms several noteworthy baselines including
Facebook Infer, a prominent static analysis tool, and FICS, the latest anomaly
detection method.
Related papers
- Learning 3D Perception from Others' Predictions [64.09115694891679]
We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector.
For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area.
arXiv Detail & Related papers (2024-10-03T16:31:28Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - FineWAVE: Fine-Grained Warning Verification of Bugs for Automated Static Analysis Tools [18.927121513404924]
Automated Static Analysis Tools (ASATs) have evolved over time to assist in detecting bugs.
Previous research efforts have explored learning-based methods to validate the reported warnings.
We propose FineWAVE, a learning-based approach that verifies bug-sensitive warnings at a fine-grained granularity.
arXiv Detail & Related papers (2024-03-24T06:21:35Z) - Automatic Static Bug Detection for Machine Learning Libraries: Are We
There Yet? [14.917820383894124]
We analyze five popular and widely used static bug detectors, i.e., Flawfinder, RATS, Cppcheck, Facebook Infer, and Clang, on a curated dataset of software bugs.
Overall, our study shows that static bug detectors find a negligible amount of all bugs accounting for 6/410 bugs (0.01%), Flawfinder and RATS are the most effective static checker for finding software bugs in machine learning libraries.
arXiv Detail & Related papers (2023-07-09T01:38:52Z) - WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised
Learning [37.09621161662761]
This paper proposes a WEakly supervised bug LocaLization (WELL) method to train a bug localization model.
With CodeBERT finetuned on the buggy-or-not binary labeled data, WELL can address bug localization in a weakly supervised manner.
arXiv Detail & Related papers (2023-05-27T06:34:26Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - An Empirical Study on Bug Severity Estimation using Source Code Metrics and Static Analysis [0.8621608193534838]
We study 3,358 buggy methods with different severity labels from 19 Java open-source projects.
Results show that code metrics are useful in predicting buggy code, but they cannot estimate the severity level of the bugs.
Our categorization shows that Security bugs have high severity in most cases while Edge/Boundary faults have low severity.
arXiv Detail & Related papers (2022-06-26T17:07:23Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
We reimplement 18 methods for detecting potential annotation errors and evaluate them on 9 English datasets.
We define a uniform evaluation setup including a new formalization of the annotation error detection task.
We release our datasets and implementations in an easy-to-use and open source software package.
arXiv Detail & Related papers (2022-06-05T22:31:45Z) - On Distribution Shift in Learning-based Bug Detectors [4.511923587827301]
We train a bug detector in two phases, first on a synthetic bug distribution to adapt the model to the bug detection domain, and then on a real bug distribution to drive the model towards the real distribution.
We evaluate our approach extensively on three widely studied bug types, for which we construct new datasets carefully designed to capture the real bug distribution.
arXiv Detail & Related papers (2022-04-21T12:17:22Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task.
Such a simple approach outperforms the meta-learning methods by roughly 220 points on current benchmarks.
arXiv Detail & Related papers (2020-03-16T00:29:14Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.