Online Regenerative Learning
- URL: http://arxiv.org/abs/2209.08657v1
- Date: Sun, 18 Sep 2022 21:04:56 GMT
- Title: Online Regenerative Learning
- Authors: Owen Shen
- Abstract summary: We study a type of Online Linear Programming (OLP) problem that maximizes the objective function with inputs.
The performance of various algorithms that analyze this type of OLP is well studied when the inputs follow some i.i.d distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a type of Online Linear Programming (OLP) problem that maximizes the
objective function with stochastic inputs. The performance of various
algorithms that analyze this type of OLP is well studied when the stochastic
inputs follow some i.i.d distribution. The two central questions to ask are:
(i) can the algorithms achieve the same efficiency if the stochastic inputs are
not i.i.d but still stationary, and (ii) how can we modify our algorithms if we
know the stochastic inputs are trendy, hence not stationary. We answer the
first question by analyzing a regenerative type of input and show the regret of
two popular algorithms are bounded by the same order as their i.i.d
counterpart. We discuss the second question in the context of linearly growing
inputs and propose two trend-adaptive algorithms. We provide numerical
simulations to illustrate the performance of our algorithms under both
regenerative and trendy inputs.
Related papers
- Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
We propose an online learning algorithm for a class of machine learning models under a separable approximation framework.
We show that the proposed algorithm produces more robust and test performance when compared to other popular learning algorithms.
arXiv Detail & Related papers (2023-05-12T13:53:03Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Learning with Subset Stacking [0.40964539027092906]
We propose a new regression algorithm that learns from a set of input-output pairs.
We call this algorithm LEarning with Subset Stacking'' or LESS, due to its resemblance to the method of stacking regressors.
arXiv Detail & Related papers (2021-12-12T14:33:49Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
We consider first- and second-order techniques to address continuous optimization problems in machine learning.
In the first-order case, we propose a framework of transition from semi-deterministic to quadratic regularization methods.
In the second-order case, we propose a novel first-order algorithm with adaptive sampling and adaptive step size.
arXiv Detail & Related papers (2021-11-29T18:10:00Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - An Adaptive Stochastic Sequential Quadratic Programming with
Differentiable Exact Augmented Lagrangians [17.9230793188835]
We consider the problem of solving nonlinear optimization programs with objective and deterministic equality.
We propose a sequential quadratic programming (SQP) that uses a differentiable exact augmented Lagrangian as the merit function.
The proposed algorithm is the first SQP that allows a line search procedure and the first line search procedure.
arXiv Detail & Related papers (2021-02-10T08:40:55Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
We study the problem of learning efficient algorithms that strongly generalize in the framework of neural program induction.
By carefully designing the input / output interfaces of the neural model and through imitation, we are able to learn models that produce correct results for arbitrary input sizes.
arXiv Detail & Related papers (2020-07-07T17:03:02Z) - Determinantal Point Processes in Randomized Numerical Linear Algebra [80.27102478796613]
Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc.
Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms.
arXiv Detail & Related papers (2020-05-07T00:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.