Semantic Segmentation using Neural Ordinary Differential Equations
- URL: http://arxiv.org/abs/2209.08667v1
- Date: Sun, 18 Sep 2022 22:13:55 GMT
- Title: Semantic Segmentation using Neural Ordinary Differential Equations
- Authors: Seyedalireza Khoshsirat, Chandra Kambhamettu
- Abstract summary: In residual networks, instead of having a discrete sequence of hidden layers, the derivative of the continuous dynamics of hidden state can be parameterized by an ODE.
We show that our neural ODE is able to achieve the state-of-the-art results using 57% less memory for training, 42% less memory for testing, and 68% less number of parameters.
- Score: 3.7588109000722727
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The idea of neural Ordinary Differential Equations (ODE) is to approximate
the derivative of a function (data model) instead of the function itself. In
residual networks, instead of having a discrete sequence of hidden layers, the
derivative of the continuous dynamics of hidden state can be parameterized by
an ODE. It has been shown that this type of neural network is able to produce
the same results as an equivalent residual network for image classification. In
this paper, we design a novel neural ODE for the semantic segmentation task. We
start by a baseline network that consists of residual modules, then we use the
modules to build our neural ODE network. We show that our neural ODE is able to
achieve the state-of-the-art results using 57% less memory for training, 42%
less memory for testing, and 68% less number of parameters. We evaluate our
model on the Cityscapes, CamVid, LIP, and PASCAL-Context datasets.
Related papers
- Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements.
In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach.
The proposed framework to learn a model describing the vector field is highly effective under noisy measurements.
arXiv Detail & Related papers (2022-05-19T11:24:41Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Hessian Aware Quantization of Spiking Neural Networks [1.90365714903665]
Neuromorphic architecture allows massively parallel computation with variable and local bit-precisions.
Current gradient based methods of SNN training use a complex neuron model with multiple state variables.
We present a simplified neuron model that reduces the number of state variables by 4-fold while still being compatible with gradient based training.
arXiv Detail & Related papers (2021-04-29T05:27:34Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Delay Differential Neural Networks [0.2538209532048866]
We propose a novel model, delay differential neural networks (DDNN), inspired by delay differential equations (DDEs)
For training DDNNs, we provide a memory-efficient adjoint method for computing gradients and back-propagate through the network.
Experiments conducted on synthetic and real-world image classification datasets such as Cifar10 and Cifar100 show the effectiveness of the proposed models.
arXiv Detail & Related papers (2020-12-12T12:20:54Z) - System Identification Through Lipschitz Regularized Deep Neural Networks [0.4297070083645048]
We use neural networks to learn governing equations from data.
We reconstruct the right-hand side of a system of ODEs $dotx(t) = f(t, x(t))$ directly from observed uniformly time-sampled data.
arXiv Detail & Related papers (2020-09-07T17:52:51Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.