TANDEM3D: Active Tactile Exploration for 3D Object Recognition
- URL: http://arxiv.org/abs/2209.08772v1
- Date: Mon, 19 Sep 2022 05:54:26 GMT
- Title: TANDEM3D: Active Tactile Exploration for 3D Object Recognition
- Authors: Jingxi Xu, Han Lin, Shuran Song, Matei Ciocarlie
- Abstract summary: We propose TANDEM3D, a method that applies a co-training framework for 3D object recognition with tactile signals.
TANDEM3D is based on a novel encoder that builds 3D object representation from contact positions and normals using PointNet++.
Our method is trained entirely in simulation and validated with real-world experiments.
- Score: 16.548376556543015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tactile recognition of 3D objects remains a challenging task. Compared to 2D
shapes, the complex geometry of 3D surfaces requires richer tactile signals,
more dexterous actions, and more advanced encoding techniques. In this work, we
propose TANDEM3D, a method that applies a co-training framework for exploration
and decision making to 3D object recognition with tactile signals. Starting
with our previous work, which introduced a co-training paradigm for 2D
recognition problems, we introduce a number of advances that enable us to scale
up to 3D. TANDEM3D is based on a novel encoder that builds 3D object
representation from contact positions and normals using PointNet++.
Furthermore, by enabling 6DOF movement, TANDEM3D explores and collects
discriminative touch information with high efficiency. Our method is trained
entirely in simulation and validated with real-world experiments. Compared to
state-of-the-art baselines, TANDEM3D achieves higher accuracy and a lower
number of actions in recognizing 3D objects and is also shown to be more robust
to different types and amounts of sensor noise. Video is available at
https://jxu.ai/tandem3d.
Related papers
- BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence [11.91274849875519]
We introduce a novel image-centric 3D perception model, BIP3D, to overcome the limitations of point-centric methods.
We leverage pre-trained 2D vision foundation models to enhance semantic understanding, and introduce a spatial enhancer module to improve spatial understanding.
In our experiments, BIP3D outperforms current state-of-the-art results on the EmbodiedScan benchmark, achieving improvements of 5.69% in the 3D detection task and 15.25% in the 3D visual grounding task.
arXiv Detail & Related papers (2024-11-22T11:35:42Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
We propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels.
Specifically, we design a feature-level constraint to align LiDAR and image features based on object-aware regions.
Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations.
Third, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data.
arXiv Detail & Related papers (2023-12-12T18:57:25Z) - Look Around and Refer: 2D Synthetic Semantics Knowledge Distillation for
3D Visual Grounding [23.672405624011873]
We propose a module to consolidate the 3D visual stream by 2D clues synthesized from point clouds.
We empirically show their aptitude to boost the quality of the learned visual representations.
Our proposed module, dubbed as Look Around and Refer (LAR), significantly outperforms the state-of-the-art 3D visual grounding techniques on three benchmarks.
arXiv Detail & Related papers (2022-11-25T17:12:08Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
Existing studies for gait recognition are dominated by 2D representations like the silhouette or skeleton of the human body in constrained scenes.
This paper aims to explore dense 3D representations for gait recognition in the wild.
We build the first large-scale 3D representation-based gait recognition dataset, named Gait3D.
arXiv Detail & Related papers (2022-04-06T03:54:06Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
We learn a regular grid of 3D voxel features from the input image which is aligned with 3D scene space via a 3D feature lifting operator.
Based on the 3D voxel features, our novel CenterNet-3D detection head formulates the 3D detection as keypoint detection in the 3D space.
We devise an efficient coarse-to-fine reconstruction module, including coarse-level voxelization and a novel local PCA-SDF shape representation.
arXiv Detail & Related papers (2021-11-04T18:30:37Z) - Unsupervised Learning of Visual 3D Keypoints for Control [104.92063943162896]
Learning sensorimotor control policies from high-dimensional images crucially relies on the quality of the underlying visual representations.
We propose a framework to learn such a 3D geometric structure directly from images in an end-to-end unsupervised manner.
These discovered 3D keypoints tend to meaningfully capture robot joints as well as object movements in a consistent manner across both time and 3D space.
arXiv Detail & Related papers (2021-06-14T17:59:59Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
In this paper, we propose an interactive framework for annotating 3D object geometry from point cloud data and RGB imagery.
Our framework targets naive users without artistic or graphics expertise.
arXiv Detail & Related papers (2020-08-24T21:51:29Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.