Artificial Intelligence for In Silico Clinical Trials: A Review
- URL: http://arxiv.org/abs/2209.09023v1
- Date: Fri, 16 Sep 2022 14:59:31 GMT
- Title: Artificial Intelligence for In Silico Clinical Trials: A Review
- Authors: Zifeng Wang, Chufan Gao, Lucas M. Glass, Jimeng Sun
- Abstract summary: In silico trials are clinical trials conducted digitally through simulation and modeling.
This article systematically reviews papers under three main topics: clinical simulation, individualized predictive modeling, and computer-aided trial design.
- Score: 41.85196749088317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A clinical trial is an essential step in drug development, which is often
costly and time-consuming. In silico trials are clinical trials conducted
digitally through simulation and modeling as an alternative to traditional
clinical trials. AI-enabled in silico trials can increase the case group size
by creating virtual cohorts as controls. In addition, it also enables
automation and optimization of trial design and predicts the trial success
rate. This article systematically reviews papers under three main topics:
clinical simulation, individualized predictive modeling, and computer-aided
trial design. We focus on how machine learning (ML) may be applied in these
applications. In particular, we present the machine learning problem
formulation and available data sources for each task. We end with discussing
the challenges and opportunities of AI for in silico trials in real-world
applications.
Related papers
- Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation [16.067841125848688]
We introduce a novel Retrieval-Reasoning framework that leverages large language models to generate synthetic clinical trials.
Experiments conducted on real clinical trials from the urlClinicalTrials.gov database demonstrate that our synthetic data can effectively augment real datasets.
Our findings suggest that LLMs for synthetic clinical trial generation hold promise for accelerating clinical research and upholding ethical standards for patient privacy.
arXiv Detail & Related papers (2024-10-16T11:46:32Z) - TrialSynth: Generation of Synthetic Sequential Clinical Trial Data [21.799655542003677]
Variational Autoencoder (VAE) designed to address challenges of generating synthetic time-sequence clinical trial data.
Our experiments demonstrate that Trial Synth surpasses the performance of other comparable methods.
arXiv Detail & Related papers (2024-09-11T08:20:30Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - ClinicalAgent: Clinical Trial Multi-Agent System with Large Language Model-based Reasoning [16.04933261211837]
Large Language Models (LLMs) and multi-agent systems have shown impressive capabilities in natural language tasks but face challenges in clinical trial applications.
We introduce Clinical Agent System (ClinicalAgent), a clinical multi-agent system designed for clinical trial tasks.
arXiv Detail & Related papers (2024-04-23T06:30:53Z) - Scaling Clinical Trial Matching Using Large Language Models: A Case
Study in Oncology [17.214664001970526]
We conduct a systematic study on scaling clinical trial matching using large language models (LLMs)
Our study is grounded in a clinical trial matching system currently in test deployment at a large U.S. health network.
arXiv Detail & Related papers (2023-08-04T07:51:15Z) - PyTrial: Machine Learning Software and Benchmark for Clinical Trial
Applications [49.69824178329405]
PyTrial provides benchmarks and open-source implementations of a series of machine learning algorithms for clinical trial design and operations.
We thoroughly investigate 34 ML algorithms for clinical trials across 6 different tasks, including patient outcome prediction, trial site selection, trial outcome prediction, patient-trial matching, trial similarity search, and synthetic data generation.
PyTrial defines each task through a simple four-step process: data loading, model specification, model training, and model evaluation, all achievable with just a few lines of code.
arXiv Detail & Related papers (2023-06-06T21:19:03Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
We present a method named AutoTrial to aid the design of clinical eligibility criteria using language models.
Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts.
arXiv Detail & Related papers (2023-05-19T01:04:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure.
We propose Sequential Predictive mOdeling of clinical Trial outcome (SPOT) that first identifies trial topics to cluster the multi-sourced trial data into relevant trial topics.
With the consideration of each trial sequence as a task, it uses a meta-learning strategy to achieve a point where the model can rapidly adapt to new tasks with minimal updates.
arXiv Detail & Related papers (2023-04-07T23:04:27Z) - Adaptive Identification of Populations with Treatment Benefit in
Clinical Trials: Machine Learning Challenges and Solutions [78.31410227443102]
We study the problem of adaptively identifying patient subpopulations that benefit from a given treatment during a confirmatory clinical trial.
We propose AdaGGI and AdaGCPI, two meta-algorithms for subpopulation construction.
arXiv Detail & Related papers (2022-08-11T14:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.