Specifying and Exploiting Non-Monotonic Domain-Specific Declarative
Heuristics in Answer Set Programming
- URL: http://arxiv.org/abs/2209.09066v1
- Date: Mon, 19 Sep 2022 14:57:50 GMT
- Title: Specifying and Exploiting Non-Monotonic Domain-Specific Declarative
Heuristics in Answer Set Programming
- Authors: Richard Comploi-Taupe and Gerhard Friedrich and Konstantin Schekotihin
and Antonius Weinzierl
- Abstract summary: Domain-specifics are an essential technique for solving problems efficiently.
Current approaches to integrate domain-specifics with Answer Set Programming (ASP) are unsatisfactory when dealing with domains that are specified non-monotonically.
We present novel syntax and semantics for declarative specifications of domain-specifics in ASP.
- Score: 5.887969742827488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain-specific heuristics are an essential technique for solving
combinatorial problems efficiently. Current approaches to integrate
domain-specific heuristics with Answer Set Programming (ASP) are unsatisfactory
when dealing with heuristics that are specified non-monotonically on the basis
of partial assignments. Such heuristics frequently occur in practice, for
example, when picking an item that has not yet been placed in bin packing.
Therefore, we present novel syntax and semantics for declarative specifications
of domain-specific heuristics in ASP. Our approach supports heuristic
statements that depend on the partial assignment maintained during solving,
which has not been possible before. We provide an implementation in ALPHA that
makes ALPHA the first lazy-grounding ASP system to support declaratively
specified domain-specific heuristics. Two practical example domains are used to
demonstrate the benefits of our proposal. Additionally, we use our approach to
implement informed} search with A*, which is tackled within ASP for the first
time. A* is applied to two further search problems. The experiments confirm
that combining lazy-grounding ASP solving and our novel heuristics can be vital
for solving industrial-size problems.
Related papers
- Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
We investigate the role of semantic representations in the era of large language models (LLMs)
We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT.
We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions.
arXiv Detail & Related papers (2024-05-02T17:32:59Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Inductive Learning of Declarative Domain-Specific Heuristics for ASP [1.0904219197219578]
This paper presents a novel approach to the automatic learning of domain-specifics.
We use Inductive Logic Programming (ILP) to learn domain-specifics from examples stemming from (near) answer sets of small but representative problem instances.
Our experimental results indicate that the learneds can improve solving performance and solution quality when solving larger, harder instances of the same problem.
arXiv Detail & Related papers (2023-08-30T08:55:17Z) - DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System
for Multilingual Named Entity Recognition [94.90258603217008]
The MultiCoNER RNum2 shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios.
Previous top systems in the MultiCoNER RNum1 either incorporate the knowledge bases or gazetteers.
We propose a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER.
arXiv Detail & Related papers (2023-05-05T16:59:26Z) - The Use of NLP-Based Text Representation Techniques to Support
Requirement Engineering Tasks: A Systematic Mapping Review [1.5469452301122177]
The research direction has changed from the use of lexical and syntactic features to the use of advanced embedding techniques.
We identify four gaps in the existing literature, why they matter, and how future research can begin to address them.
arXiv Detail & Related papers (2022-05-17T02:47:26Z) - InstructionNER: A Multi-Task Instruction-Based Generative Framework for
Few-shot NER [31.32381919473188]
We propose a multi-task instruction-based generative framework, named InstructionNER, for low-resource named entity recognition.
Specifically, we reformulate the NER task as a generation problem, which enriches source sentences with task-specific instructions and answer options, then inferences the entities and types in natural language.
Experimental results show that our method consistently outperforms other baselines on five datasets in few-shot settings.
arXiv Detail & Related papers (2022-03-08T07:56:36Z) - DS-TOD: Efficient Domain Specialization for Task Oriented Dialog [12.395323315744625]
Self-supervised dialog-specific pretraining on large conversational datasets yields substantial gains over traditional language modeling (LM) pretraining in downstream task-oriented dialog (TOD)
We investigate the effects of domain specialization of pretrained language models (PLMs) for task-oriented dialog.
We propose a resource-efficient and modular domain specialization by means of domain adapters.
arXiv Detail & Related papers (2021-10-15T22:25:51Z) - Query and Extract: Refining Event Extraction as Type-oriented Binary
Decoding [51.57864297948228]
We propose a novel event extraction framework that takes event types and argument roles as natural language queries.
Our framework benefits from the attention mechanisms to better capture the semantic correlation between the event types or argument roles and the input text.
arXiv Detail & Related papers (2021-10-14T15:49:40Z) - Aggregate Semantics for Propositional Answer Set Programs [14.135212040150389]
We present and compare the main aggregate semantics that have been proposed for propositional ASP programs.
We highlight crucial properties such as computational complexity and expressive power, and outline the capabilities and limitations of different approaches.
arXiv Detail & Related papers (2021-09-17T17:38:55Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Heuristic Domain Adaptation [105.59792285047536]
Heuristic Domain Adaptation Network (HDAN) explicitly learns the domain-invariant and domain-specific representations.
Heuristic Domain Adaptation Network (HDAN) has exceeded state-of-the-art on unsupervised DA, multi-source DA and semi-supervised DA.
arXiv Detail & Related papers (2020-11-30T04:21:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.