Calibrating Segmentation Networks with Margin-based Label Smoothing
- URL: http://arxiv.org/abs/2209.09641v2
- Date: Wed, 31 Jan 2024 01:33:16 GMT
- Title: Calibrating Segmentation Networks with Margin-based Label Smoothing
- Authors: Balamurali Murugesan, Bingyuan Liu, Adrian Galdran, Ismail Ben Ayed,
Jose Dolz
- Abstract summary: We provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses.
These losses could be viewed as approximations of a linear penalty imposing equality constraints on logit distances.
We propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances.
- Score: 19.669173092632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the undeniable progress in visual recognition tasks fueled by deep
neural networks, there exists recent evidence showing that these models are
poorly calibrated, resulting in over-confident predictions. The standard
practices of minimizing the cross entropy loss during training promote the
predicted softmax probabilities to match the one-hot label assignments.
Nevertheless, this yields a pre-softmax activation of the correct class that is
significantly larger than the remaining activations, which exacerbates the
miscalibration problem. Recent observations from the classification literature
suggest that loss functions that embed implicit or explicit maximization of the
entropy of predictions yield state-of-the-art calibration performances. Despite
these findings, the impact of these losses in the relevant task of calibrating
medical image segmentation networks remains unexplored. In this work, we
provide a unifying constrained-optimization perspective of current
state-of-the-art calibration losses. Specifically, these losses could be viewed
as approximations of a linear penalty (or a Lagrangian term) imposing equality
constraints on logit distances. This points to an important limitation of such
underlying equality constraints, whose ensuing gradients constantly push
towards a non-informative solution, which might prevent from reaching the best
compromise between the discriminative performance and calibration of the model
during gradient-based optimization. Following our observations, we propose a
simple and flexible generalization based on inequality constraints, which
imposes a controllable margin on logit distances. Comprehensive experiments on
a variety of public medical image segmentation benchmarks demonstrate that our
method sets novel state-of-the-art results on these tasks in terms of network
calibration, whereas the discriminative performance is also improved.
Related papers
- Calibrating Deep Neural Network using Euclidean Distance [5.675312975435121]
In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples.
High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability.
This research introduces a novel loss function called Focal Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples.
arXiv Detail & Related papers (2024-10-23T23:06:50Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
We consider uncertainty-driven perturbations of the training data points.
Unlike loss-driven perturbations, uncertainty-guided perturbations do not cross the decision boundary.
We show that UDP is guaranteed to achieve the robustness margin decision on linear models.
arXiv Detail & Related papers (2022-02-11T16:22:08Z) - The Devil is in the Margin: Margin-based Label Smoothing for Network
Calibration [21.63888208442176]
In spite of the dominant performances of deep neural networks, recent works have shown that they are poorly calibrated.
We provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses.
We propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances.
arXiv Detail & Related papers (2021-11-30T14:21:47Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
We study the generation of prediction intervals in regression for uncertainty quantification.
We use a general learning theory to characterize the optimality-feasibility tradeoff that encompasses Lipschitz continuity and VC-subgraph classes.
We empirically demonstrate the strengths of our interval generation and calibration algorithms in terms of testing performances compared to existing benchmarks.
arXiv Detail & Related papers (2021-02-26T17:55:30Z) - A Flatter Loss for Bias Mitigation in Cross-dataset Facial Age
Estimation [37.107335288543624]
We advocate a cross-dataset protocol for age estimation benchmarking.
We propose a novel loss function that is more effective for neural network training.
arXiv Detail & Related papers (2020-10-20T15:22:29Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.