Towards Ontology Reshaping for KG Generation with User-in-the-Loop:
Applied to Bosch Welding
- URL: http://arxiv.org/abs/2209.11067v1
- Date: Thu, 22 Sep 2022 14:59:13 GMT
- Title: Towards Ontology Reshaping for KG Generation with User-in-the-Loop:
Applied to Bosch Welding
- Authors: Dongzhuoran Zhou, Baifan Zhou, Jieying Chen, Gong Cheng, Egor V.
Kostylev, Evgeny Kharlamov
- Abstract summary: Knowledge graphs (KG) are used in a wide range of applications.
The automation of KG generation is very desired due to the data volume and variety in industries.
- Score: 18.83458273005337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graphs (KG) are used in a wide range of applications. The
automation of KG generation is very desired due to the data volume and variety
in industries. One important approach of KG generation is to map the raw data
to a given KG schema, namely a domain ontology, and construct the entities and
properties according to the ontology. However, the automatic generation of such
ontology is demanding and existing solutions are often not satisfactory. An
important challenge is a trade-off between two principles of ontology
engineering: knowledge-orientation and data-orientation. The former one
prescribes that an ontology should model the general knowledge of a domain,
while the latter one emphasises on reflecting the data specificities to ensure
good usability. We address this challenge by our method of ontology reshaping,
which automates the process of converting a given domain ontology to a smaller
ontology that serves as the KG schema. The domain ontology can be designed to
be knowledge-oriented and the KG schema covers the data specificities. In
addition, our approach allows the option of including user preferences in the
loop. We demonstrate our on-going research on ontology reshaping and present an
evaluation using real industrial data, with promising results.
Related papers
- Distill-SynthKG: Distilling Knowledge Graph Synthesis Workflow for Improved Coverage and Efficiency [59.6772484292295]
Knowledge graphs (KGs) generated by large language models (LLMs) are increasingly valuable for Retrieval-Augmented Generation (RAG) applications.
Existing KG extraction methods rely on prompt-based approaches, which are inefficient for processing large-scale corpora.
We propose SynthKG, a multi-step, document-level synthesis KG workflow based on LLMs.
We also design a novel graph-based retrieval framework for RAG.
arXiv Detail & Related papers (2024-10-22T00:47:54Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [65.23793829741014]
Embodied-RAG is a framework that enhances the model of an embodied agent with a non-parametric memory system.
At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail.
We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 200 explanation and navigation queries.
arXiv Detail & Related papers (2024-09-26T21:44:11Z) - An Open-Source Knowledge Graph Ecosystem for the Life Sciences [5.665519167428707]
PheKnowLator is a semantic ecosystem for automating the construction of ontologically grounded knowledge graphs.
The ecosystem includes KG construction resources, analysis tools, and benchmarks.
PheKnowLator enables fully customizable KGs without compromising performance or usability.
arXiv Detail & Related papers (2023-07-11T18:55:09Z) - Representation Learning for Person or Entity-centric Knowledge Graphs:
An Application in Healthcare [0.757843972001219]
This paper presents an end-to-end representation learning framework to extract entity-centric KGs from structured and unstructured data.
We introduce a star-shaped classifier to represent the multiple facets of a person and use it to guide KG creation.
We highlight that this approach has several potential applications across domains and is open-sourced.
arXiv Detail & Related papers (2023-05-09T17:39:45Z) - Query-based Industrial Analytics over Knowledge Graphs with Ontology
Reshaping [6.047374579252933]
Poor design of high degree of mismatch between them and industrial data naturally lead to KGs of low quality.
We propose an approach to transform analytics into KGta to reflect the underlying data and thus help to maintain better KG schemas.
arXiv Detail & Related papers (2022-09-22T15:20:58Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
Scene graph generation from images is a task of great interest to applications such as robotics.
We propose an initial approximation to a framework called Ontology-Guided Scene Graph Generation (OG-SGG)
arXiv Detail & Related papers (2022-02-21T13:23:15Z) - Understood in Translation, Transformers for Domain Understanding [2.379911867541422]
We propose a supervised machine learning method, based on Transformers, for domain definition of a corpus.
We argue why such automated definition of the domain's structure is beneficial both in terms of construction time and quality of the generated graph.
We present a new health domain dataset based on publications extracted from PubMed.
arXiv Detail & Related papers (2020-12-18T14:47:47Z) - Mapping Patterns for Virtual Knowledge Graphs [71.61234136161742]
Virtual Knowledge Graphs (VKG) constitute one of the most promising paradigms for integrating and accessing legacy data sources.
We build on well-established methodologies and patterns studied in data management, data analysis, and conceptual modeling.
We validate our catalog on the considered VKG scenarios, showing it covers the vast majority of patterns present therein.
arXiv Detail & Related papers (2020-12-03T13:54:52Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z) - Knowledge Graphs and Knowledge Networks: The Story in Brief [0.1933681537640272]
Knowledge Graphs (KGs) represent real-world noisy raw information in a structured form, capturing relationships between entities.
For dynamic real-world applications such as social networks, recommender systems, computational biology, relational knowledge representation has emerged as a challenging research problem.
This article attempts to summarize the journey of KG for AI.
arXiv Detail & Related papers (2020-03-07T18:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.