Conversational QA Dataset Generation with Answer Revision
- URL: http://arxiv.org/abs/2209.11396v1
- Date: Fri, 23 Sep 2022 04:05:38 GMT
- Title: Conversational QA Dataset Generation with Answer Revision
- Authors: Seonjeong Hwang and Gary Geunbae Lee
- Abstract summary: We introduce a novel framework that extracts question-worthy phrases from a passage and then generates corresponding questions considering previous conversations.
Our framework revises the extracted answers after generating questions so that answers exactly match paired questions.
- Score: 2.5838973036257458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational question--answer generation is a task that automatically
generates a large-scale conversational question answering dataset based on
input passages. In this paper, we introduce a novel framework that extracts
question-worthy phrases from a passage and then generates corresponding
questions considering previous conversations. In particular, our framework
revises the extracted answers after generating questions so that answers
exactly match paired questions. Experimental results show that our simple
answer revision approach leads to significant improvement in the quality of
synthetic data. Moreover, we prove that our framework can be effectively
utilized for domain adaptation of conversational question answering.
Related papers
- Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
We propose a conversation-level RAG approach, which incorporates fine-grained retrieval augmentation and self-check for conversational question answering.
In particular, our approach consists of three components, namely conversational question refiner, fine-grained retriever and self-check based response generator.
arXiv Detail & Related papers (2024-03-27T04:20:18Z) - Estimating the Usefulness of Clarifying Questions and Answers for
Conversational Search [17.0363715044341]
We propose a method for processing answers to clarifying questions, moving away from previous work that simply appends answers to the original query.
Specifically, we propose a classifier for assessing usefulness of the prompted clarifying question and an answer given by the user.
Results demonstrate significant improvements over strong non-mixed-initiative baselines.
arXiv Detail & Related papers (2024-01-21T11:04:30Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
We present a new state-of-the-art for answering ambiguous questions that exploits a database of unambiguous questions generated from Wikipedia.
Our method improves performance by 15% on recall measures and 10% on measures which evaluate disambiguating questions from predicted outputs.
arXiv Detail & Related papers (2023-08-16T20:23:16Z) - Open-Domain Conversational Question Answering with Historical Answers [29.756094955426597]
This paper proposes ConvADR-QA that leverages historical answers to boost retrieval performance.
In our proposed framework, the retrievers use a teacher-student framework to reduce noises from previous turns.
Our experiments on the benchmark dataset, OR-QuAC, demonstrate that our model outperforms existing baselines in both extractive and generative reader settings.
arXiv Detail & Related papers (2022-11-17T08:20:57Z) - An Answer Verbalization Dataset for Conversational Question Answerings
over Knowledge Graphs [9.979689965471428]
This paper contributes to the state-of-the-art by extending an existing ConvQA dataset with verbalized answers.
We perform experiments with five sequence-to-sequence models on generating answer responses while maintaining grammatical correctness.
arXiv Detail & Related papers (2022-08-13T21:21:28Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
A key challenge in building and evaluating models for discourse comprehension is the lack of annotated data.
This paper presents a novel paradigm that enables scalable data collection targeting the comprehension of news documents.
The resulting corpus, DCQA, consists of 22,430 question-answer pairs across 607 English documents.
arXiv Detail & Related papers (2021-11-01T04:50:26Z) - Building and Evaluating Open-Domain Dialogue Corpora with Clarifying
Questions [65.60888490988236]
We release a dataset focused on open-domain single- and multi-turn conversations.
We benchmark several state-of-the-art neural baselines.
We propose a pipeline consisting of offline and online steps for evaluating the quality of clarifying questions in various dialogues.
arXiv Detail & Related papers (2021-09-13T09:16:14Z) - QAConv: Question Answering on Informative Conversations [85.2923607672282]
We focus on informative conversations including business emails, panel discussions, and work channels.
In total, we collect 34,204 QA pairs, including span-based, free-form, and unanswerable questions.
arXiv Detail & Related papers (2021-05-14T15:53:05Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
We propose a novel graph-guided retrieval method to model the relations among answers across conversation turns.
We also propose to incorporate the multi-round relevance feedback technique to explore the impact of the retrieval context on current question understanding.
arXiv Detail & Related papers (2021-04-17T04:39:41Z) - Open-Retrieval Conversational Machine Reading [80.13988353794586]
In conversational machine reading, systems need to interpret natural language rules, answer high-level questions, and ask follow-up clarification questions.
Existing works assume the rule text is provided for each user question, which neglects the essential retrieval step in real scenarios.
In this work, we propose and investigate an open-retrieval setting of conversational machine reading.
arXiv Detail & Related papers (2021-02-17T08:55:01Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
We propose a new Spoken Conversational Question Answering task (SCQA)
SCQA aims at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora.
Our main objective is to build a QA system to deal with conversational questions both in spoken and text forms.
arXiv Detail & Related papers (2020-10-18T05:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.