Unified Algorithms for RL with Decision-Estimation Coefficients: PAC, Reward-Free, Preference-Based Learning, and Beyond
- URL: http://arxiv.org/abs/2209.11745v3
- Date: Mon, 29 Apr 2024 02:47:28 GMT
- Title: Unified Algorithms for RL with Decision-Estimation Coefficients: PAC, Reward-Free, Preference-Based Learning, and Beyond
- Authors: Fan Chen, Song Mei, Yu Bai,
- Abstract summary: We develop a unified algorithm framework for a large class of learning goals.
Our framework handles many learning goals such as no-regret RL, PAC RL, reward-free learning, model estimation, and preference-based learning.
As applications, we propose "decouplable representation" as a natural sufficient condition for bounding generalized DECs.
- Score: 28.118197762236953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern Reinforcement Learning (RL) is more than just learning the optimal policy; Alternative learning goals such as exploring the environment, estimating the underlying model, and learning from preference feedback are all of practical importance. While provably sample-efficient algorithms for each specific goal have been proposed, these algorithms often depend strongly on the particular learning goal and thus admit different structures correspondingly. It is an urging open question whether these learning goals can rather be tackled by a single unified algorithm. We make progress on this question by developing a unified algorithm framework for a large class of learning goals, building on the Decision-Estimation Coefficient (DEC) framework. Our framework handles many learning goals such as no-regret RL, PAC RL, reward-free learning, model estimation, and preference-based learning, all by simply instantiating the same generic complexity measure called "Generalized DEC", and a corresponding generic algorithm. The generalized DEC also yields a sample complexity lower bound for each specific learning goal. As applications, we propose "decouplable representation" as a natural sufficient condition for bounding generalized DECs, and use it to obtain many new sample-efficient results (and recover existing results) for a wide range of learning goals and problem classes as direct corollaries. Finally, as a connection, we re-analyze two existing optimistic model-based algorithms based on Posterior Sampling and Maximum Likelihood Estimation, showing that they enjoy sample complexity bounds under similar structural conditions as the DEC.
Related papers
- Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Tight Guarantees for Interactive Decision Making with the
Decision-Estimation Coefficient [51.37720227675476]
We introduce a new variant of the Decision-Estimation Coefficient, and use it to derive new lower bounds that improve upon prior work on three fronts.
We provide upper bounds on regret that scale with the same quantity, thereby closing all but one of the gaps between upper and lower bounds in Foster et al.
Our results apply to both the regret framework and PAC framework, and make use of several new analysis and algorithm design techniques that we anticipate will find broader use.
arXiv Detail & Related papers (2023-01-19T18:24:08Z) - Proof of Swarm Based Ensemble Learning for Federated Learning
Applications [3.2536767864585663]
In federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns.
Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications.
We propose PoSw, a novel distributed consensus algorithm for ensemble learning in a federated setting.
arXiv Detail & Related papers (2022-12-28T13:53:34Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
We provide a complexity measure, the Decision-Estimation Coefficient, that is proven to be both necessary and sufficient for sample-efficient interactive learning.
A unified algorithm design principle, Estimation-to-Decisions (E2D), transforms any algorithm for supervised estimation into an online algorithm for decision making.
arXiv Detail & Related papers (2021-12-27T02:53:44Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Finding the Homology of Decision Boundaries with Active Learning [26.31885403636642]
We propose an active learning algorithm to recover the homology of decision boundaries.
Our algorithm sequentially and adaptively selects which samples it requires the labels of.
Experiments on several datasets show the sample complexity improvement in recovering the homology.
arXiv Detail & Related papers (2020-11-19T04:22:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.