Multistage Large Segment Imputation Framework Based on Deep Learning and
Statistic Metrics
- URL: http://arxiv.org/abs/2209.11766v1
- Date: Thu, 22 Sep 2022 14:17:24 GMT
- Title: Multistage Large Segment Imputation Framework Based on Deep Learning and
Statistic Metrics
- Authors: JinSheng Yang, YuanHai Shao, ChunNa Li, Wensi Wang
- Abstract summary: This study proposes a multistage imputation framework based on deep learning with adaptability for missing value imputation.
The model presents a mixture measurement index of low- and higher-order statistics for data distribution and a new perspective on data imputation performance metrics.
Experimental results show that the multistage imputation strategy and the mixture index are superior and that the effect of missing value imputation has been improved to some extent.
- Score: 8.266097781813656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Missing value is a very common and unavoidable problem in sensors, and
researchers have made numerous attempts for missing value imputation,
particularly in deep learning models. However, for real sensor data, the
specific data distribution and data periods are rarely considered, making it
difficult to choose the appropriate evaluation indexes and models for different
sensors. To address this issue, this study proposes a multistage imputation
framework based on deep learning with adaptability for missing value
imputation. The model presents a mixture measurement index of low- and
higher-order statistics for data distribution and a new perspective on data
imputation performance metrics, which is more adaptive and effective than the
traditional mean squared error. A multistage imputation strategy and dynamic
data length are introduced into the imputation process for data periods.
Experimental results on different types of sensor data show that the multistage
imputation strategy and the mixture index are superior and that the effect of
missing value imputation has been improved to some extent, particularly for the
large segment imputation problem. The codes and experimental results have been
uploaded to GitHub.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Deep Imputation of Missing Values in Time Series Health Data: A Review
with Benchmarking [0.0]
This survey performs six data-centric experiments to benchmark state-of-the-art deep imputation methods on five time series health data sets.
Deep learning methods that jointly perform cross-sectional (across variables) and longitudinal (across time) imputations of missing values in time series data yield statistically better data quality than traditional imputation methods.
arXiv Detail & Related papers (2023-02-10T16:03:36Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Adversarial Deep Feature Extraction Network for User Independent Human
Activity Recognition [4.988898367111902]
We present an adversarial subject-independent feature extraction method with the maximum mean discrepancy (MMD) regularization for human activity recognition.
We evaluate the method on well-known public data sets showing that it significantly improves user-independent performance and reduces variance in results.
arXiv Detail & Related papers (2021-10-23T07:50:32Z) - RIFLE: Imputation and Robust Inference from Low Order Marginals [10.082738539201804]
We develop a statistical inference framework for regression and classification in the presence of missing data without imputation.
Our framework, RIFLE, estimates low-order moments of the underlying data distribution with corresponding confidence intervals to learn a distributionally robust model.
Our experiments demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of missing values is high and/or when the number of data points is relatively small.
arXiv Detail & Related papers (2021-09-01T23:17:30Z) - Online Missing Value Imputation and Change Point Detection with the
Gaussian Copula [21.26330349034669]
Missing value imputation is crucial for real-world data science.
We develop an online imputation algorithm for mixed data using the Gaussian copula.
arXiv Detail & Related papers (2020-09-25T16:27:47Z) - Establishing strong imputation performance of a denoising autoencoder in
a wide range of missing data problems [0.0]
We develop a consistent framework for both training and imputation.
We benchmarked the results against state-of-the-art imputation methods.
The developed autoencoder obtained the smallest error for all ranges of initial data corruption.
arXiv Detail & Related papers (2020-04-06T12:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.