Asset Pricing and Deep Learning
- URL: http://arxiv.org/abs/2209.12014v1
- Date: Sat, 24 Sep 2022 14:18:07 GMT
- Title: Asset Pricing and Deep Learning
- Authors: Chen Zhang (SenseTime Research)
- Abstract summary: I investigate various deep learning methods for asset pricing, especially for risk premia measurement.
I demonstrate high performance of all kinds of state-of-the-art (SOTA) deep learning methods.
I demonstrate large economic gains to investors using deep learning forecasts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional machine learning methods have been widely studied in financial
innovation. My study focuses on the application of deep learning methods on
asset pricing. I investigate various deep learning methods for asset pricing,
especially for risk premia measurement. All models take the same set of
predictive signals (firm characteristics, systematic risks and macroeconomics).
I demonstrate high performance of all kinds of state-of-the-art (SOTA) deep
learning methods, and figure out that RNNs with memory mechanism and attention
have the best performance in terms of predictivity. Furthermore, I demonstrate
large economic gains to investors using deep learning forecasts. The results of
my comparative experiments highlight the importance of domain knowledge and
financial theory when designing deep learning models. I also show return
prediction tasks bring new challenges to deep learning. The time varying
distribution causes distribution shift problem, which is essential for
financial time series prediction. I demonstrate that deep learning methods can
improve asset risk premium measurement. Due to the booming deep learning
studies, they can constantly promote the study of underlying financial
mechanisms behind asset pricing. I also propose a promising research method
that learning from data and figuring out the underlying economic mechanisms
through explainable artificial intelligence (AI) methods. My findings not only
justify the value of deep learning in blooming fintech development, but also
highlight their prospects and advantages over traditional machine learning
methods.
Related papers
- Beyond Trend Following: Deep Learning for Market Trend Prediction [49.89480853499917]
We advocate for the use of Artificial Intelligence and Machine Learning techniques to predict future market trends.
These predictions, when done properly, can improve the performance of asset managers by increasing returns and reducing drawdowns.
arXiv Detail & Related papers (2024-06-10T11:42:30Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
Deep learning models are replacing traditional statistical and machine learning models for price forecasting tasks.
This review delves deeply into deep learning-based forecasting models, presenting information on model architectures, practical applications, and their respective advantages and disadvantages.
The present contribution also includes potential directions for future research, such as examining the effectiveness of deep learning models with complex structures for price forecasting.
arXiv Detail & Related papers (2023-04-21T03:46:09Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
We propose a novel one-dimensional convolutional neural networks (CNN) model to predict financial market movement.
The customized one-dimensional convolutional layers scan financial trading data through time, while different types of data, such as prices and volume, share parameters ( Kernels) with each other.
Our model automatically extracts features instead of using traditional technical indicators.
arXiv Detail & Related papers (2021-04-05T19:36:48Z) - Sequential Deep Learning for Credit Risk Monitoring with Tabular
Financial Data [0.901219858596044]
We present our attempts to create a novel approach to assessing credit risk using deep learning.
We propose a new credit card transaction sampling technique to use with deep recurrent and causal convolution-based neural networks.
We show that our sequential deep learning approach using a temporal convolutional network outperformed the benchmark non-sequential tree-based model.
arXiv Detail & Related papers (2020-12-30T21:29:48Z) - Deep Portfolio Optimization via Distributional Prediction of Residual
Factors [3.9189409002585562]
We propose a novel method of constructing a portfolio based on predicting the distribution of a financial quantity called residual factors.
We demonstrate the efficacy of our method on U.S. and Japanese stock market data.
arXiv Detail & Related papers (2020-12-14T04:09:52Z) - Machine Learning Algorithms for Financial Asset Price Forecasting [0.0]
This study directly compares and contrasts state-of-the-art implementations of modern Machine Learning algorithms on high performance computing infrastructures.
The implemented Machine Learning models - trained on time series data for an entire stock universe - significantly outperform the CAPM on out-of-sample (OOS) test data.
arXiv Detail & Related papers (2020-03-31T18:14:18Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
We study valuation models for algorithmic trading from the perspective of adversarial machine learning.
We introduce new attacks specific to this domain with size constraints that minimize attack costs.
We discuss how these attacks can be used as an analysis tool to study and evaluate the robustness properties of financial models.
arXiv Detail & Related papers (2020-02-21T22:04:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.