S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction
- URL: http://arxiv.org/abs/2209.12075v3
- Date: Wed, 19 Mar 2025 23:57:52 GMT
- Title: S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction
- Authors: Jiamian Wang, Kunpeng Li, Yulun Zhang, Xin Yuan, Zhiqiang Tao,
- Abstract summary: A snapshot compressive imager (CASSI) with Transformer reconstruction backend remarks high-fidelity sensing performance.<n> dominant spatial and spectral attention designs show limitations in hyperspectral modeling.<n>We propose a spatial-spectral (S2-) Transformer implemented by a paralleled attention design and a mask-aware learning strategy.
- Score: 59.39343894089959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Snapshot compressive imaging (SCI) surges as a novel way of capturing hyperspectral images. It operates an optical encoder to compress the 3D data into a 2D measurement and adopts a software decoder for the signal reconstruction. Recently, a representative SCI set-up of coded aperture snapshot compressive imager (CASSI) with Transformer reconstruction backend remarks high-fidelity sensing performance. However, dominant spatial and spectral attention designs show limitations in hyperspectral modeling. The spatial attention values describe the inter-pixel correlation but overlook the across-spectra variation within each pixel. The spectral attention size is unscalable to the token spatial size and thus bottlenecks information allocation. Besides, CASSI entangles the spatial and spectral information into a 2D measurement, placing a barrier for information disentanglement and modeling. In addition, CASSI blocks the light with a physical binary mask, yielding the masked data loss. To tackle above challenges, we propose a spatial-spectral (S2-) Transformer implemented by a paralleled attention design and a mask-aware learning strategy. Firstly, we systematically explore pros and cons of different spatial (-spectral) attention designs, based on which we find performing both attentions in parallel well disentangles and models the blended information. Secondly, the masked pixels induce higher prediction difficulty and should be treated differently from unmasked ones. We adaptively prioritize the loss penalty attributing to the mask structure by referring to the mask-encoded prediction as an uncertainty estimator. We theoretically discuss the distinct convergence tendencies between masked/unmasked regions of the proposed learning strategy. Extensive experiments demonstrate that on average, the results of the proposed method are superior over the state-of-the-art method.
Related papers
- Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Flow-Attention-based Spatio-Temporal Aggregation Network for 3D Mask
Detection [12.160085404239446]
We propose a novel 3D mask detection framework called FASTEN.
We tailor the network for focusing more on fine details in large movements, which can eliminate redundant-temporal feature interference.
FASTEN only requires five frames input and outperforms eight competitors for both intra-dataset and cross-dataset evaluations.
arXiv Detail & Related papers (2023-10-25T11:54:21Z) - Aperture Diffraction for Compact Snapshot Spectral Imaging [27.321750056840706]
We demonstrate a compact, cost-effective snapshot spectral imaging system named Aperture Diffraction Imaging Spectrometer (ADIS)
A new optical design that each point in the object space is multiplexed to discrete encoding locations on the mosaic filter sensor is introduced.
The Cascade Shift-Shuffle Spectral Transformer (CSST) with strong perception of the diffraction degeneration is designed to solve a sparsity-constrained inverse problem.
arXiv Detail & Related papers (2023-09-27T16:48:46Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z) - D$^\text{2}$UF: Deep Coded Aperture Design and Unrolling Algorithm for
Compressive Spectral Image Fusion [22.0246327137227]
This paper presents the fusion of the compressive measurements of a low-spatial high-spectral resolution coded aperture snapshot spectral imager (CASSI) architecture and a high-spatial low-spectral resolution multispectral color filter array (MCFA) system.
Unlike previous CSIF works, this paper proposes joint optimization of the sensing architectures and a reconstruction network in an end-to-end (E2E) manner.
arXiv Detail & Related papers (2022-05-24T15:39:34Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Unsupervised Spatial-spectral Hyperspectral Image Reconstruction and
Clustering with Diffusion Geometry [6.279792995020646]
This work introduces the Spatial-Spectral Image Reconstruction and Clustering with Diffusion Geometry (DSIRC) algorithm for partitioning highly mixed hyperspectral images.
DSIRC locates spectrally correlated pixels within a data-adaptive spatial neighborhood and reconstructs that pixel's spectral signature using those of its neighbors.
Results indicate that incorporating spatial information through image reconstruction substantially improves the performance of pixel-wise clustering.
arXiv Detail & Related papers (2022-04-28T13:42:12Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Calibrated Hyperspectral Image Reconstruction via Graph-based
Self-Tuning Network [40.71031760929464]
Hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded snapshot spectral imaging (CASSI) system.
Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI.
This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments.
We propose a novel Graph-based Self-Tuning ( GST) network to reason uncertainties adapting to varying spatial structures of masks among
arXiv Detail & Related papers (2021-12-31T09:39:13Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.