Text Summarization with Oracle Expectation
- URL: http://arxiv.org/abs/2209.12714v1
- Date: Mon, 26 Sep 2022 14:10:08 GMT
- Title: Text Summarization with Oracle Expectation
- Authors: Yumo Xu and Mirella Lapata
- Abstract summary: Extractive summarization produces summaries by identifying and concatenating the most important sentences in a document.
Most summarization datasets do not come with gold labels indicating whether document sentences are summary-worthy.
We propose a simple yet effective labeling algorithm that creates soft, expectation-based sentence labels.
- Score: 88.39032981994535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extractive summarization produces summaries by identifying and concatenating
the most important sentences in a document. Since most summarization datasets
do not come with gold labels indicating whether document sentences are
summary-worthy, different labeling algorithms have been proposed to extrapolate
oracle extracts for model training. In this work, we identify two flaws with
the widely used greedy labeling approach: it delivers suboptimal and
deterministic oracles. To alleviate both issues, we propose a simple yet
effective labeling algorithm that creates soft, expectation-based sentence
labels. We define a new learning objective for extractive summarization which
incorporates learning signals from multiple oracle summaries and prove it is
equivalent to estimating the oracle expectation for each document sentence.
Without any architectural modifications, the proposed labeling scheme achieves
superior performance on a variety of summarization benchmarks across domains
and languages, in both supervised and zero-shot settings.
Related papers
- Query-based Video Summarization with Pseudo Label Supervision [19.229722872058055]
Existing datasets for manually labelled query-based video summarization are costly and thus small.
Self-supervision can address the data sparsity challenge by using a pretext task and defining a method to acquire extra data with pseudo labels.
Experimental results show that the proposed video summarization algorithm achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-04T22:28:17Z) - Attributable and Scalable Opinion Summarization [79.87892048285819]
We generate abstractive summaries by decoding frequent encodings, and extractive summaries by selecting the sentences assigned to the same frequent encodings.
Our method is attributable, because the model identifies sentences used to generate the summary as part of the summarization process.
It scales easily to many hundreds of input reviews, because aggregation is performed in the latent space rather than over long sequences of tokens.
arXiv Detail & Related papers (2023-05-19T11:30:37Z) - DiffuSum: Generation Enhanced Extractive Summarization with Diffusion [14.930704950433324]
Extractive summarization aims to form a summary by directly extracting sentences from the source document.
This paper proposes DiffuSum, a novel paradigm for extractive summarization.
Experimental results show that DiffuSum achieves the new state-of-the-art extractive results on CNN/DailyMail with ROUGE scores of $44.83/22.56/40.56$.
arXiv Detail & Related papers (2023-05-02T19:09:16Z) - MACSum: Controllable Summarization with Mixed Attributes [56.685735509260276]
MACSum is the first human-annotated summarization dataset for controlling mixed attributes.
We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization.
arXiv Detail & Related papers (2022-11-09T17:17:37Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Fact-level Extractive Summarization with Hierarchical Graph Mask on BERT [9.271716501646194]
We propose to extract fact-level semantic units for better extractive summarization.
We incorporate our model with BERT using a hierarchical graph mask.
Experiments on the CNN/DaliyMail dataset show that our model achieves state-of-the-art results.
arXiv Detail & Related papers (2020-11-19T09:29:51Z) - Discrete Optimization for Unsupervised Sentence Summarization with
Word-Level Extraction [31.648764677078837]
Automatic sentence summarization produces a shorter version of a sentence, while preserving its most important information.
We model these two aspects in an unsupervised objective function, consisting of language modeling and semantic similarity metrics.
Our proposed method achieves a new state-of-the art for unsupervised sentence summarization according to ROUGE scores.
arXiv Detail & Related papers (2020-05-04T19:01:55Z) - Extractive Summarization as Text Matching [123.09816729675838]
This paper creates a paradigm shift with regard to the way we build neural extractive summarization systems.
We formulate the extractive summarization task as a semantic text matching problem.
We have driven the state-of-the-art extractive result on CNN/DailyMail to a new level (44.41 in ROUGE-1)
arXiv Detail & Related papers (2020-04-19T08:27:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.