Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization
- URL: http://arxiv.org/abs/2209.12807v1
- Date: Mon, 26 Sep 2022 15:59:55 GMT
- Title: Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization
- Authors: Jingyang Lin and Yu Wang and Qi Cai and Yingwei Pan and Ting Yao and
Hongyang Chao and Tao Mei
- Abstract summary: Outlier detection tasks have been playing a critical role in AI safety.
Deep neural network classifiers usually tend to incorrectly classify out-of-distribution (OOD) inputs into in-distribution classes with high confidence.
We propose an alternative probabilistic paradigm that is both practically useful and theoretically viable for the OOD detection tasks.
- Score: 114.43504951058796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outlier detection tasks have been playing a critical role in AI safety. There
has been a great challenge to deal with this task. Observations show that deep
neural network classifiers usually tend to incorrectly classify
out-of-distribution (OOD) inputs into in-distribution classes with high
confidence. Existing works attempt to solve the problem by explicitly imposing
uncertainty on classifiers when OOD inputs are exposed to the classifier during
training. In this paper, we propose an alternative probabilistic paradigm that
is both practically useful and theoretically viable for the OOD detection
tasks. Particularly, we impose statistical independence between inlier and
outlier data during training, in order to ensure that inlier data reveals
little information about OOD data to the deep estimator during training.
Specifically, we estimate the statistical dependence between inlier and outlier
data through the Hilbert-Schmidt Independence Criterion (HSIC), and we penalize
such metric during training. We also associate our approach with a novel
statistical test during the inference time coupled with our principled
motivation. Empirical results show that our method is effective and robust for
OOD detection on various benchmarks. In comparison to SOTA models, our approach
achieves significant improvement regarding FPR95, AUROC, and AUPR metrics. Code
is available: \url{https://github.com/jylins/hood}.
Related papers
- How Does Unlabeled Data Provably Help Out-of-Distribution Detection? [63.41681272937562]
Unlabeled in-the-wild data is non-trivial due to the heterogeneity of both in-distribution (ID) and out-of-distribution (OOD) data.
This paper introduces a new learning framework SAL (Separate And Learn) that offers both strong theoretical guarantees and empirical effectiveness.
arXiv Detail & Related papers (2024-02-05T20:36:33Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Unsupervised Dense Retrieval with Relevance-Aware Contrastive
Pre-Training [81.3781338418574]
We propose relevance-aware contrastive learning.
We consistently improve the SOTA unsupervised Contriever model on the BEIR and open-domain QA retrieval benchmarks.
Our method can not only beat BM25 after further pre-training on the target corpus but also serves as a good few-shot learner.
arXiv Detail & Related papers (2023-06-05T18:20:27Z) - Using Semantic Information for Defining and Detecting OOD Inputs [3.9577682622066264]
Out-of-distribution (OOD) detection has received some attention recently.
We demonstrate that the current detectors inherit the biases in the training dataset.
This can render the current OOD detectors impermeable to inputs lying outside the training distribution but with the same semantic information.
We perform OOD detection on semantic information extracted from the training data of MNIST and COCO datasets.
arXiv Detail & Related papers (2023-02-21T21:31:20Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.