Efficient Image Denoising by Low-Rank Singular Vector Approximations of Geodesics' Gramian Matrix
- URL: http://arxiv.org/abs/2209.13094v4
- Date: Thu, 18 Jul 2024 15:42:44 GMT
- Title: Efficient Image Denoising by Low-Rank Singular Vector Approximations of Geodesics' Gramian Matrix
- Authors: Kelum Gajamannage, Yonggi Park, S. M. Mallikarjunaiah, Sunil Mathur,
- Abstract summary: Noise contamination of images results in substandard expectations among the people.
Image denoising is an essential pre-processing step.
We present a manifold-based noise filtering method that mainly exploits a few prominent singular vectors of the geodesics' Gramian matrix.
- Score: 2.3499129784547654
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the advent of sophisticated cameras, the urge to capture high-quality images has grown enormous. However, the noise contamination of the images results in substandard expectations among the people; thus, image denoising is an essential pre-processing step. While the algebraic image processing frameworks are sometimes inefficient for this denoising task as they may require processing of matrices of order equivalent to some power of the order of the original image, the neural network image processing frameworks are sometimes not robust as they require a lot of similar training samples. Thus, here we present a manifold-based noise filtering method that mainly exploits a few prominent singular vectors of the geodesics' Gramian matrix. Especially, the framework partitions an image, say that of size $n \times n$, into $n^2$ overlapping patches of known size such that one patch is centered at each pixel. Then, the prominent singular vectors, of the Gramian matrix of size $n^2 \times n^2$ of the geodesic distances computed over the patch space, are utilized to denoise the image. Here, the prominent singular vectors are revealed by efficient, but diverse, approximation techniques, rather than explicitly computing them using frameworks like Singular Value Decomposition (SVD) which encounters $\mathcal{O}(n^6)$ operations. Finally, we compare both computational time and the noise filtration performance of the proposed denoising algorithm with and without singular vector approximation techniques.
Related papers
- Deep Gaussian mixture model for unsupervised image segmentation [1.3654846342364308]
In many tasks sufficient pixel-level labels are very difficult to obtain.
We propose a method which combines a Gaussian mixture model (GMM) with unsupervised deep learning techniques.
We demonstrate the advantages of our method in various experiments on the example of infarct segmentation on multi-sequence MRI images.
arXiv Detail & Related papers (2024-04-18T15:20:59Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - UHD Image Deblurring via Multi-scale Cubic-Mixer [12.402054374952485]
transformer-based algorithms are making a splash in the domain of image deblurring.
These algorithms depend on the self-attention mechanism with CNN stem to model long range dependencies between tokens.
arXiv Detail & Related papers (2022-06-08T05:04:43Z) - Adaptive Non-linear Filtering Technique for Image Restoration [0.0]
Decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented.
Algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels.
arXiv Detail & Related papers (2022-04-20T08:36:59Z) - Fast and High-Quality Image Denoising via Malleable Convolutions [72.18723834537494]
We present Malleable Convolution (MalleConv), as an efficient variant of dynamic convolution.
Unlike previous works, MalleConv generates a much smaller set of spatially-varying kernels from input.
We also build an efficient denoising network using MalleConv, coined as MalleNet.
arXiv Detail & Related papers (2022-01-02T18:35:20Z) - Efficient Deep Image Denoising via Class Specific Convolution [24.103826414190216]
We propose an efficient deep neural network for image denoising based on pixel-wise classification.
The proposed method can reduce the computational costs without sacrificing the performance.
arXiv Detail & Related papers (2021-03-02T10:28:15Z) - Powers of layers for image-to-image translation [60.5529622990682]
We propose a simple architecture to address unpaired image-to-image translation tasks.
We start from an image autoencoder architecture with fixed weights.
For each task we learn a residual block operating in the latent space, which is iteratively called until the target domain is reached.
arXiv Detail & Related papers (2020-08-13T09:02:17Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - A Survey on Patch-based Synthesis: GPU Implementation and Optimization [0.0]
This thesis surveys the research in patch-based synthesis and algorithms for finding correspondences between small local regions of images.
One of the algorithms we have studied is PatchMatch, can find similar regions or "patches" of an image one to two orders of magnitude faster than previous techniques.
In computer graphics, we have explored removing unwanted objects from images, seamlessly moving objects in images, changing image aspect ratios, and video summarization.
arXiv Detail & Related papers (2020-05-11T19:25:28Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
We introduce the idea of a cGAN which explicitly leverages structure in the image noise space.
By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold.
Based on our experiments, our model substantially outperforms existing state-of-the-art architectures.
arXiv Detail & Related papers (2020-02-11T00:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.