Draw Your Art Dream: Diverse Digital Art Synthesis with Multimodal
Guided Diffusion
- URL: http://arxiv.org/abs/2209.13360v2
- Date: Wed, 28 Sep 2022 05:31:18 GMT
- Title: Draw Your Art Dream: Diverse Digital Art Synthesis with Multimodal
Guided Diffusion
- Authors: Nisha Huang, Fan Tang, Weiming Dong and Changsheng Xu
- Abstract summary: Current digital art synthesis methods usually use single-modality inputs as guidance.
We propose the multimodal guided artwork diffusion (MGAD) model, which is a diffusion-based digital artwork generation approach.
- Score: 78.47285788155818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital art synthesis is receiving increasing attention in the multimedia
community because of engaging the public with art effectively. Current digital
art synthesis methods usually use single-modality inputs as guidance, thereby
limiting the expressiveness of the model and the diversity of generated
results. To solve this problem, we propose the multimodal guided artwork
diffusion (MGAD) model, which is a diffusion-based digital artwork generation
approach that utilizes multimodal prompts as guidance to control the
classifier-free diffusion model. Additionally, the contrastive language-image
pretraining (CLIP) model is used to unify text and image modalities. Extensive
experimental results on the quality and quantity of the generated digital art
paintings confirm the effectiveness of the combination of the diffusion model
and multimodal guidance. Code is available at
https://github.com/haha-lisa/MGAD-multimodal-guided-artwork-diffusion.
Related papers
- Diffusion Models For Multi-Modal Generative Modeling [32.61765315067488]
We propose a principled way to define a diffusion model by constructing a unified multi-modal diffusion model in a common diffusion space.
We propose several multimodal generation settings to verify our framework, including image transition, masked-image training, joint image-label and joint image-representation generative modeling.
arXiv Detail & Related papers (2024-07-24T18:04:17Z) - FashionSD-X: Multimodal Fashion Garment Synthesis using Latent Diffusion [11.646594594565098]
This study introduces a novel generative pipeline designed to transform the fashion design process by employing latent diffusion models.
We leverage and enhance state-of-the-art virtual try-on datasets, including Multimodal Dress Code and VITON-HD, by integrating sketch data.
arXiv Detail & Related papers (2024-04-26T14:59:42Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Collaborative Diffusion for Multi-Modal Face Generation and Editing [34.16906110777047]
We present Collaborative Diffusion, where pre-trained uni-modal diffusion models collaborate to achieve multi-modal face generation and editing without re-training.
Specifically, we propose dynamic diffuser, a meta-network that adaptively hallucinates multi-modal denoising steps by predicting the spatial-temporal influence functions for each pre-trained uni-modal model.
arXiv Detail & Related papers (2023-04-20T17:59:02Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Versatile Diffusion: Text, Images and Variations All in One Diffusion
Model [76.89932822375208]
Versatile Diffusion handles multiple flows of text-to-image, image-to-text, and variations in one unified model.
Our code and models are open-sourced at https://github.com/SHI-Labs/Versatile-Diffusion.
arXiv Detail & Related papers (2022-11-15T17:44:05Z) - DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models [33.79188588182528]
We present a novel DiffusionCLIP which performs text-driven image manipulation with diffusion models using Contrastive Language-Image Pre-training (CLIP) loss.
Our method has a performance comparable to that of the modern GAN-based image processing methods for in and out-of-domain image processing tasks.
Our method can be easily used for various novel applications, enabling image translation from an unseen domain to another unseen domain or stroke-conditioned image generation in an unseen domain.
arXiv Detail & Related papers (2021-10-06T12:59:39Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.