Neural Network Panning: Screening the Optimal Sparse Network Before
Training
- URL: http://arxiv.org/abs/2209.13378v1
- Date: Tue, 27 Sep 2022 13:31:43 GMT
- Title: Neural Network Panning: Screening the Optimal Sparse Network Before
Training
- Authors: Xiatao Kang, Ping Li, Jiayi Yao, Chengxi Li
- Abstract summary: We argue that network pruning can be summarized as an expressive force transfer process of weights.
We propose a pruning scheme before training called Neural Network Panning which guides expressive force transfer through multi-index and multi-process steps.
- Score: 15.349144733875368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pruning on neural networks before training not only compresses the original
models, but also accelerates the network training phase, which has substantial
application value. The current work focuses on fine-grained pruning, which uses
metrics to calculate weight scores for weight screening, and extends from the
initial single-order pruning to iterative pruning. Through these works, we
argue that network pruning can be summarized as an expressive force transfer
process of weights, where the reserved weights will take on the expressive
force from the removed ones for the purpose of maintaining the performance of
original networks. In order to achieve optimal expressive force scheduling, we
propose a pruning scheme before training called Neural Network Panning which
guides expressive force transfer through multi-index and multi-process steps,
and designs a kind of panning agent based on reinforcement learning to automate
processes. Experimental results show that Panning performs better than various
available pruning before training methods.
Related papers
- Theoretical Characterization of How Neural Network Pruning Affects its
Generalization [131.1347309639727]
This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization.
It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero.
More surprisingly, the generalization bound gets better as the pruning fraction gets larger.
arXiv Detail & Related papers (2023-01-01T03:10:45Z) - Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep
Neural Network, a Survey [69.3939291118954]
State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly.
Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass.
This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training.
arXiv Detail & Related papers (2022-05-17T05:37:08Z) - Prospect Pruning: Finding Trainable Weights at Initialization using
Meta-Gradients [36.078414964088196]
Pruning neural networks at initialization would enable us to find sparse models that retain the accuracy of the original network.
Current methods are insufficient to enable this optimization and lead to a large degradation in model performance.
We propose Prospect Pruning (ProsPr), which uses meta-gradients through the first few steps of optimization to determine which weights to prune.
Our method achieves state-of-the-art pruning performance on a variety of vision classification tasks, with less data and in a single shot compared to existing pruning-at-initialization methods.
arXiv Detail & Related papers (2022-02-16T15:18:55Z) - When to Prune? A Policy towards Early Structural Pruning [27.91996628143805]
We propose a policy that prunes as early as possible during training without hurting performance.
Our method yields $1.4%$ top-1 accuracy boost over state-of-the-art pruning counterparts, cuts down training cost on GPU by $2.4times$.
arXiv Detail & Related papers (2021-10-22T18:39:22Z) - Training Deep Neural Networks with Joint Quantization and Pruning of
Weights and Activations [5.17729871332369]
State-of-the-art quantization techniques are currently applied to both the weights and activations of deep neural networks.
In this work, we jointly apply novel uniform quantization and unstructured pruning methods to both the weights and activations of deep neural networks during training.
arXiv Detail & Related papers (2021-10-15T16:14:36Z) - How much pre-training is enough to discover a good subnetwork? [10.699603774240853]
We mathematically analyze the amount of dense network pre-training needed for a pruned network to perform well.
We find a simple theoretical bound in the number of gradient descent pre-training iterations on a two-layer, fully-connected network.
Experiments with larger datasets require more pre-training forworks obtained via pruning to perform well.
arXiv Detail & Related papers (2021-07-31T15:08:36Z) - FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training
with Dynamic Sparsity [74.58777701536668]
We introduce the FreeTickets concept, which can boost the performance of sparse convolutional neural networks over their dense network equivalents by a large margin.
We propose two novel efficient ensemble methods with dynamic sparsity, which yield in one shot many diverse and accurate tickets "for free" during the sparse training process.
arXiv Detail & Related papers (2021-06-28T10:48:20Z) - Sparse Training via Boosting Pruning Plasticity with Neuroregeneration [79.78184026678659]
We study the effect of pruning throughout training from the perspective of pruning plasticity.
We design a novel gradual magnitude pruning (GMP) method, named gradual pruning with zero-cost neuroregeneration (GraNet) and its dynamic sparse training (DST) variant (GraNet-ST)
Perhaps most impressively, the latter for the first time boosts the sparse-to-sparse training performance over various dense-to-sparse methods by a large margin with ResNet-50 on ImageNet.
arXiv Detail & Related papers (2021-06-19T02:09:25Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
We show that it is possible to train neural networks in such a way that a predefined 'core' subnetwork can be split-off from the trained full network with remarkable good performance.
We show that training a Transformer with a low-rank core gives a low-rank model with superior performance than when training the low-rank model alone.
arXiv Detail & Related papers (2021-06-16T15:57:51Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
A common limitation of most existing pruning techniques is that they require pre-training of the network at least once before pruning.
We propose STAMP, which task-adaptively prunes a network pretrained on a large reference dataset by generating a pruning mask on it as a function of the target dataset.
We validate STAMP against recent advanced pruning methods on benchmark datasets.
arXiv Detail & Related papers (2020-06-22T10:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.