Classical and Quantum Iterative Optimization Algorithms Based on Matrix
Legendre-Bregman Projections
- URL: http://arxiv.org/abs/2209.14185v1
- Date: Wed, 28 Sep 2022 15:59:08 GMT
- Title: Classical and Quantum Iterative Optimization Algorithms Based on Matrix
Legendre-Bregman Projections
- Authors: Zhengfeng Ji
- Abstract summary: We consider Legendre-Bregman projections defined on the Hermitian matrix space and design iterative optimization algorithms based on them.
We study both exact and approximate Bregman projection algorithms.
In particular, our approximate iterative algorithm gives rise to the non-commutative versions of the generalized iterative scaling (GIS) algorithm for maximum entropy inference.
- Score: 1.5736899098702972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider Legendre-Bregman projections defined on the Hermitian matrix
space and design iterative optimization algorithms based on them. A general
duality theorem is established for Bregman divergences on Hermitian matrices,
and it plays a crucial role in proving the convergence of the iterative
algorithms. We study both exact and approximate Bregman projection algorithms.
In the particular case of Kullback-Leibler divergence, our approximate
iterative algorithm gives rise to the non-commutative versions of both the
generalized iterative scaling (GIS) algorithm for maximum entropy inference and
the AdaBoost algorithm in machine learning as special cases. As the
Legendre-Bregman projections are simple matrix functions on Hermitian matrices,
quantum algorithmic techniques are applicable to achieve potential speedups in
each iteration of the algorithm. We discuss several quantum algorithmic design
techniques applicable in our setting, including the smooth function evaluation
technique, two-phase quantum minimum finding, and NISQ Gibbs state preparation.
Related papers
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
We propose a quantum algorithm for solving the linear advection-diffusion equation by employing a new approximate probabilistic imaginary-time evolution (PITE) operator.
We construct the explicit quantum circuit for realizing the imaginary-time evolution of the Hamiltonian coming from the advection-diffusion equation.
Our algorithm gives comparable result to the Harrow-Hassidim-Lloyd (HHL) algorithm with similar gate complexity, while we need much less ancillary qubits.
arXiv Detail & Related papers (2024-09-27T08:56:21Z) - Bregman-divergence-based Arimoto-Blahut algorithm [53.64687146666141]
We generalize the Arimoto-Blahut algorithm to a general function defined over Bregman-divergence system.
We propose a convex-optimization-free algorithm that can be applied to classical and quantum rate-distortion theory.
arXiv Detail & Related papers (2024-08-10T06:16:24Z) - Tensor networks based quantum optimization algorithm [0.0]
In optimization, one of the well-known classical algorithms is power iterations.
We propose a quantum realiziation to circumvent this pitfall.
Our methodology becomes instance agnostic and thus allows one to address black-box optimization within the framework of quantum computing.
arXiv Detail & Related papers (2024-04-23T13:49:11Z) - A fixed-point algorithm for matrix projections with applications in
quantum information [7.988085110283119]
We show that our algorithm converges exponentially fast to the optimal solution in the number of iterations.
We discuss several applications of our algorithm in quantum resource theories and quantum Shannon theory.
arXiv Detail & Related papers (2023-12-22T11:16:11Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
We propose a quantum algorithm based on ridge regression model, which get the optimal fitting parameters.
The proposed algorithm has a wide range of application and the proposed algorithm can be used as a subroutine of other quantum algorithms.
arXiv Detail & Related papers (2021-04-27T11:03:52Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.