Spherical Image Inpainting with Frame Transformation and Data-driven
Prior Deep Networks
- URL: http://arxiv.org/abs/2209.14604v1
- Date: Thu, 29 Sep 2022 07:51:27 GMT
- Title: Spherical Image Inpainting with Frame Transformation and Data-driven
Prior Deep Networks
- Authors: Jianfei Li, Chaoyan Huang, Raymond Chan, Han Feng, Micheal Ng, Tieyong
Zeng
- Abstract summary: In this work, we focus on the challenging task of spherical image inpainting with deep learning-based regularizer.
We employ a fast directional spherical Haar framelet transform and develop a novel optimization framework based on a sparsity assumption of the framelet transform.
We show that the proposed algorithms can greatly recover damaged spherical images and achieve the best performance over purely using deep learning denoiser and plug-and-play model.
- Score: 13.406134708071345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spherical image processing has been widely applied in many important fields,
such as omnidirectional vision for autonomous cars, global climate modelling,
and medical imaging. It is non-trivial to extend an algorithm developed for
flat images to the spherical ones. In this work, we focus on the challenging
task of spherical image inpainting with deep learning-based regularizer.
Instead of a naive application of existing models for planar images, we employ
a fast directional spherical Haar framelet transform and develop a novel
optimization framework based on a sparsity assumption of the framelet
transform. Furthermore, by employing progressive encoder-decoder architecture,
a new and better-performed deep CNN denoiser is carefully designed and works as
an implicit regularizer. Finally, we use a plug-and-play method to handle the
proposed optimization model, which can be implemented efficiently by training
the CNN denoiser prior. Numerical experiments are conducted and show that the
proposed algorithms can greatly recover damaged spherical images and achieve
the best performance over purely using deep learning denoiser and plug-and-play
model.
Related papers
- $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement [5.810659946867557]
Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging.
We propose a novel algorithm that progressively generates and optimize meshes from multi-view images.
Our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
arXiv Detail & Related papers (2024-08-19T16:33:17Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
We study the learning of representation models for omnidirectional images and propose to use the properties of HEALPix uniform sampling of the sphere to redefine the mathematical tools used in deep learning models for omnidirectional images.
Our proposed on-the-sphere solution leads to a better compression gain that can save 13.7% of the bit rate compared to similar learned models applied to equirectangular images.
arXiv Detail & Related papers (2021-07-19T22:14:30Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.